4782 J ournal of Medicinal Chemistry, 1996, Vol. 39, No. 24
Prokai-Tatrai et al.
v/v) of (2-hydroxypropyl)-â-cyclodextrin (HPâCD)34 (50%, w/v,
aqueous solution) and DMSO35 for the tail-flick latency
measurements. We have also studied the solubility of our
peptide CDSs in HPâCD for optimizing their formulation. The
cyclodextrin inclusion complexes were prepared by equilibrat-
ing an excess of CDSs with a 50% (w/v) aqueous solution of
HPâCD by the following way: To the degassed solution of
HPâCD was added a known amount of CDS. The suspension
was sonicated for 30 min under ice cooling and then filtered,
and the filtrate was lyophilized. The CDS content of the
complexes was analyzed. The degree of complexation was
around 20 mg/g.
(16) Bodor, N. Drug Targeting and Retrometabolic Drug Design
Approaches. Adv. Drug Delivery Rev. 1994, 14, 157-166.
(17) Hill, R. G.; Pepper, C. M. The depression of thalamic nociceptive
neurones by D-ala2-D-leu5-enkephalin. Eur. J . Pharm. 1978, 47,
223-225.
(18) (a) Hoek, J .; Rydstrom, J . Physiological roles of nicotinamide
nucleotide transhydrogenase. J . Biochem. 1988, 254, 1-10. (b)
Bodor, N.; Kaminsky, J . Reactivity of biologically important
reduced pyridines I. Correlation between hydride transfer and
one-electron oxidation of dihydropyridines and heterocycles. J .
Mol. Struct. (THEOCHEM) 1988, 163, 315-330. (c) Brewster,
M.; Kaminski, J .; Bodor, N. Reactivity of biologically important
reduced pyridines. 2. The oxidation of 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP). An MNDO study. J . Am. Chem. Soc.
1988, 110, 6377-6341. (d) Bodor, N.; Brewster, M.; Kaminski,
J . Theoretical studies on the hydride transfer between 1-methyl-
1,4-dihydronicotinamide and its corresponding pyridinium salt.
Tetrahedron 1988, 44, 7601-7610. (e) Bodor, N.; Brewster, M.;
Kaminski, J . Reactivity of biologically important reduced pyr-
idines III. Energetics and mechanism of hydride transfer
between 1-methyl-1,4-dihydronicotinamide and 1-methylnicotin-
amide cation. J . Mol. Struct. (THEOCHEM) 1990, 206, 315-
334.
(19) (a) Bodor, N.; Nakamura, T.; Brewster, M. E. Improved delivery
through biological membranes XXIII: Synthesis, distribution
and neurochemical effects of a tryptamine chemical delivery
systems. Drug Des. Delivery 1986, 1, 56-64. (b) Pop, E.;
Brewster, M. E.; Bodor, N. Site-specific delivery of the central
nervous system acting amines. Drugs Future 1991, 16, 919-
944.
(20) Schwartz, J .; Giros, B.; Gros, C.; Llorens-Cortes, C.; Arrang, J .;
Garbag, M.; Pollard, H. Novel agents affecting enkephalinergic
and histaminergic transmissions in the brain. Cephalagia 1987,
7, 32-35.
(21) Yoshimoto, T.; Fischl, M.; Orlowski, R. C.; Walter, R. J . Post-
proline cleaving enzyme and post-proline dipeptidyl aminopep-
tidase. Comparison of two peptidases with high specificity for
proline residues. J . Biol. Chem. 1978, 253, 3708-3716.
(22) Zhang, Y. L.; Tian, Z.; Kowalczuk, M.; Edwards, P.; Roeske, R.
W. Structure-activity relationship of LHRH antagonists: Incor-
poration of positively charged Npy -alkylated 3-D-pyridylalanines.
In Peptides: Chemistry, Structure and Biology; Proceedings of
the Thirteenth American Peptide Symposium; Hodges, R. S.,
Smith, J . A., Eds.; ESCOM: Leiden, 1994, pp 565-567.
(23) Tsuzuki, I.; Hama, T.; Hibi, T.; Konishi, R.; Futaki, S.; Kitagawa,
K. Adamantane as a brain-directed drug carrier for poorly
absorbed drug: Antinociceptive effects of [D-Ala2]Leu-enkephalin
derivatives conjugated with the 1-adamantane moiety. Biochem.
Pharmacol. 1991, 41, R5-R8.
Ack n ow led gm en t. This project has been supported
by the National Institute for Drug Abuse (Grant No.
RO1 DA09268) and by a National Institutes of Health
Training Grant (T32 NS07333). Appreciation is ex-
pressed to Drs. W. M. Wu, E. Brunt-Chikhale, and G.
Hochhaus as well as to Mr. H. S. Kim for their
invaluable help. The technical assistance of Dr. Z.
Szeiler is acknowledged.
Su p p or tin g In for m a tion Ava ila ble: Electrospray ioniza-
tion mass spectrometric analysis showing the release of
DADLE in rat brain homogenate in vitro (1 page). Ordering
information is given on any current masthead page.
Refer en ces
(1) Hughes, J . A. H.; Smith, T. W. Identification of two related
pentapeptides from the brain with potent opiate agonist activity.
Nature (London) 1975, 258, 577-579.
(2) (a) Olson, G. A.; Olson, R. D.; Kastin, A. J . Endogeneous opiates:
1984. Peptides 1985, 6, 769-771. (b) Baile, C. A.; McLaughlin,
C. L.; Della-Fera, M. A. Role of cholecytokinin and opioid
peptides in control of food intake. Physiol. Rev. 1986, 66, 172.
(3) Malik, J . B.; Goldstein, J . M. Analgesic activity of enkephalins
following intracerebral administration in the rats. Life Sci. 1977,
20, 827-832.
(4) Chaillet, P.; Coulaud, A.; Zajac, J .-M.; Fournie-Zaluski, M.-C.;
Costentin, J .; Roques, B. The µ rather than the δ subtype of
opioid receptors appears to be involved in the enkephalin-
induced analgesia. Eur. J . Pharmacol. 1984, 101, 83-90.
(5) Hambrook, J . M.; Morgan, B. A.; Rance, M. J .; Smith, C. F. Mode
of deactivation of the enkephalins by rat and human plasma and
rat brain homogenate. Nature (London) 1976, 262, 782-783.
(6) Malfroy, B.; Swerts, J . P.; Guyon, A.; Roques, B. P.; Schwartz,
J . C. High-affinity enkephalin-degrading peptidase in brain is
increased after morphine. Nature (London) 1978, 276, 523-526.
(7) Nakajima, S.; Komuro, T.; Shimamura, M.; Hazato, T. Enkepha-
lin-binding protein in human blood. Biochem. Int. 1989, 19, 529-
536.
(24) Coste, J .; Le Nguyen, D.; Castro, B. PyBOP: a new peptide
coupling reagent devoid of toxic by-product. Tetrahedron Lett.
1990, 18, 1469-1472.
(25) Kisfaludy, L.; Low, M.; Nyeki, O.; Szirtes, T.; Schon, I. Die
Verwendung von Pentafluorophenylestern bei Peptidsynthesen.
(The use of pentafluorophenyl esters for peptide synthesis.) Ann.
Chem. 1973, 1421-1429.
(26) Eisner, V.; Kuthan, J . The chemistry of dihydropyridines. Chem.
Rev. 1972, 72, 1-42.
(27) Enzyme inhibition during receptor binding studies did not
account for dipeptidyl peptidase activity. Thus, the IC50 mea-
sured for the intermediates 16 may be, in part, due to the slow
release of DADLE.
(8) (a) Paterson, S. J .; Corbett, A. D.; Gillan, M. G. C.; Kosterlitz,
H. W.; Knight, A. T.; Robson, L. E. Radioligands for probing
opioid receptors. J . Recept. Res. 1984, 4, 143-145. (b) Handa,
B. K.; Lane, A. C.; Lord, J . A. H.; Morgan, B. A.; Rance, M. J .;
Smith, C. F. C. Analoques of â-LPH61-64 possessing µ selective
agonist activity at opiate receptors. Eur. J . Pharmacol. 1981,
70, 531-540.
(28) Valentino, R. J .; Katz, J . L.; Medzihradsky, F.; Woods, J . H.
Receptor binding, antagonist, and withdrawal. Neuroscience
1983, 32, 2887-2896.
(9) (a) Pert, C. B.; Pert, A.; Chong, J .-K.; Fong, B. T. C. [D-Ala]2-
Met-Enkephalinamide: A potent, long-lasting synthetic pen-
tapeptide analgesic. Science 1976, 194, 330-332. (b) Tortella,
F. C.; Robles, L.; Holaday, J . W. The anticonvulsant effects of
DADLE are primarly mediated by activation of δ opioid recep-
tors: interaction between δ and µ receptor agonists. Life Sci.
1985, 37, 497-503.
(29) Bodanszky, M. Active Esters in Peptide Synthesis. In Peptides;
Gross, E., Meienhofer, J ., Eds.; Academic Press, New York; 1979;
Vol. 1, pp 105-196.
(30) Bodor, N.; Buchwald, P. Estimating the role of the van der Waals
molecular size in solute partitioning. J . Pharm. Sci., submitted
for publication.
(10) Prokai, L. Delivery of peptides into the central nervous system.
Drug Discovery Today 1996, 1, 161-167.
(31) Prokai, L.; Hsu, B. H.; Bodor, N. Desorption chemical ionization,
thermospray, and fast atom bombardment mass spectrometry
of dihydropyridine h pyridinium salt-type redox systems. Anal.
Chem. 1989, 61, 1723-1728.
(11) (a) Brownlees, J .; Williams, C. H. Peptidases, peptides, and the
mammalian blood-barrier. J . Neurochem. 1993, 60, 793-803. (b)
Begley, D. J .; Squires, L. K.; Zlokovic, B. W.; Mirtovic, D. M.;
Hughes, C. C. W.; Revest, P. A.; Greenwood, J . Permeability of
the blood-brain barrier to the immunosuppressive cyclic peptide
cyclosporin A. J . Neurochem. 1990, 55, 1222-1230.
(32) Kaiser, E.; Colescott, R. I.; Bossinger, C. D.; Cook, P. I. Color
test for detection of free amino groups in the solid-phase
synthesis of peptides. Anal. Biochem. 1970, 34, 595-598.
(33) Hochhaus, G.; Yu, V. C.; Sadee, W. Delta opioid receptors in
human neuroplasma cell lines. Brain Res. 1986, 382, 327-333.
(34) Brewster, M. E. Parental safety and application of 2-hydroxy-
propyl-â-cyclodextrin. In New Trends in Cyclodextrins; Duchene,
D., Ed.; Editions de Sante Publishers: Paris, 1991; pp 315-350.
(35) (a) Greig, N.; Sweeney, D.; Rapoport, S. Inability of dimethyl
sulfoxide to increase brain uptake of water-soluble compounds:
Implications to chemotherapy for brain tumors. Cancer Treat.
Rep. 1985, 69, 305-312. (b) Neuwelt, E. A.; Barnett, P.;
Barranger, J .; McCormick, C.; Pagel, M.; Frenkel, E. Inability
of dimethyl sulfoxide and 5-fluorouracil to open the blood-brain
barrier. Neurosurgery 1983, 12, 29-34.
(12) Bodor, N.; Prokai, L.; Wu, W.-M.; Farag, H.; J onalagadda, S.;
Kawamura, M.; Simpkins, J . A strategy for delivering peptides
into the central nervous system by sequential metabolism.
Science 1992, 257, 1698-1700.
(13) Bodor, N.; Prokai, L. Molecular packaging. Peptide delivery to
the central nervous system by sequential metabolism. In Peptide-
Based Drug Design; Taylor, M. D., Amidon, G. L., Eds.; American
Chemical Society: Washington, DC, 1995; pp 317-337.
(14) Prokai, L.; Ouyang, X.-D.; Wu, W.-M.; Bodor, N. Chemical
delivery system to transport amide to the central nervous
system. J . Am. Chem. Soc. 1994, 116, 2643-2644.
(15) Bodor, N. Retrometabolic approaches to drug targeting. NIDA
Res. Monogr. Series 1995, 154, 1-26.
J M960356E