Ster eoselective Ald ol Ad d ition s of Ach ir a l Eth yl Keton e-Der ived
Tr ich lor osilyl En ola tes
Scott E. Denmark* and Son M. Pham
Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801
denmark@scs.uiuc.edu
Received J anuary 24, 2003
Methods for the preparation of geometrically defined enoxy(trichlorosilanes) derived from ethyl
ketone enolates have been developed. The addition of enoxy(trichlorosilanes) (trichlorosilyl enolates)
to aldehydes proceeds with good yields in the presence of catalytic amounts of chiral phosphoramides.
The reaction of Z-trichlorosilyl enolates to aryl aldehydes affords aldol products with good to excellent
diastereo- and enantioselectivities. Phosphoramide-catalyzed aldol additions lacked substrate
generality providing modest selectivities with unsaturated and aliphatic aldehydes. In all cases,
the phosphoramide-catalyzed aldol addition of E-trichlorosilyl enolates to aldehydes provided good
yields with moderate to good stereoselectivities.
In tr od u ction
developed. Although this burgeoning field is highly
promising, excessively long reaction times and narrow
substrate classes currently prevent its broad application.5
The aldol addition is among one of the most important
methods for the stereocontrolled construction of carbon-
carbon bonds.1 The utility and application of this trans-
formation is illustrated by the vast number of reviews
written on the subject over the past decade.2 1,3-Oxygen-
ated carbon chains as afforded by the aldol reaction are
common structural motifs observed in many natural
products.3 The formation of these carbon chains is typi-
fied by the addition of an enol or enolate to an aldehyde
to form two new stereogenic centers in the case of
substituted nucleophiles. Controlling the relative and
absolute configuration of the new stereogenic centers has
been the primary focus of most new developments in this
field. The nonenzymatic methods that are currently
utilized often provide the desired structural motifs with
excellent stereocontrol. Unfortunately, these processes
are typically restricted to the use of either stoichiometric
amounts of the chiral modifying agent, limited substrate
classes, or poor stereochemical correlation between the
starting enolate donor and aldol product.4 Stereoselective
routes employing unactivated ketones have also been
Ba ck gr ou n d
Recent reports from these laboratories have docu-
mented the utility of trichlorosilyl enol ethers as a new
(4) For examples of chiral auxiliaries see: (a) Evans, D. A.; Bartroli,
J .; Shih, T. L. J . Am. Chem. Soc. 1981, 103, 2127. (b) Crimmins, M.
T.; King, B. W.; Tabet, E. A.; Chaudary, K. J . Org. Chem. 2001, 66,
894. (c) Crimmins, M. T.; King, B. W.; Tabet, E. A. J . Am. Chem. Soc.
1997, 119, 7883. (d) Abiko, A.; Liu, J .-F.; Masamune, S. J . Am. Chem.
Soc. 1997, 119, 2586. For examples of chiral metalloids see: (e) Evans,
D. A.; Rieger, D. L.; Bilodeau, M. T.; Urp´ı, F. J . Am. Chem. Soc. 1991,
113, 1047. (f) Duthaler, R. O.; Hafner, A. Chem. Rev. 1992, 92, 807.
(g) Roos, G. H. P.; Haines, R. J .; Raab, C. E. Synth. Commun. 1993,
23, 1251. (h) Slough, G. A.; Bergman, R. G.; Heathcock, C. H. J . Am.
Chem. Soc. 1989, 111, 938. (i) Corey, E. J .; Kim. S. S. J . Am. Chem.
Soc. 1990, 112, 4976. (j) Fujimura, O. J . Am. Chem. Soc. 1998, 120,
10032. (k) Sodeoka, M.; Tokunoh, R.; Miyazaki, F.; Hagiwara, E.;
Shibasaki, M. Synlett 1997, 463. (l) Sodeoka, M.; Ohrai, K.; Shibasaki,
M. J . Org. Chem. 1995, 60, 2648. (m) Kru¨ger, J .; Carreira, E. M. J .
Am. Chem. Soc. 1998, 120, 837. For examples of chiral Lewis acids,
see: (n) Kiyooka, S.-I. Rev. Heteroat. Chem. 1997, 17, 245. (o) Parmee,
E. R.; Tempkin, O.; Masamune, S.; Abiko, A. J . Am. Chem. Soc. 1991,
113, 9365. (p) Furata, K.; Maruyama, T.; Yamamoto, H. J . Am. Chem.
Soc. 1991, 113, 1041. (q) Ishimaru, K.; Monda, K.; Yamamoto, H.;
Akiba, K.-Y. Tetrahedron 1998, 54, 727. (r) Carreira, E. M.; Singer, R.
A.; Lee, W. J . Am. Chem. Soc. 1994, 116, 8837. (s) Singer, R. A.;
Carreira, E. M. J . Am. Chem. Soc. 1995, 117, 12360. (t) Kim, Y.; Singer,
R. A.; Carreira, E. M. Angew. Chem., Int. Ed. 1998, 37, 1261. (u) Evans,
D. A.; Kozlowski, M. C.; Burgey, C. S.; MacMillan, D. W. C. J . Am.
Chem. Soc. 1997, 119, 7893. (v) Kobayashi, S.; Nagayama, S.; Busuji-
ma, T. Tetrahedron 1999, 55, 8739. (w) Yanagisawa, A.; Matsumoto,
Y.; Nakashima, H.; Asakawa, K.; Yamamoto, H. J . Am. Chem. Soc.
1997, 119, 9319. (x) Yamashita, Y.; Saito, S.; Ishitani, H.; Kobayashi,
S. J . Am. Chem. Soc. 2002, 124, 3292. (y) Ishitani, H.; Yamashita, Y.;
Shimizu, H.; Kobayashi, S. J . Am. Chem. Soc. 2000, 122, 5403.
(5) (a) Yoshikawa, N.; Yamada, Y. M. A.; Das, J .; Sasai, H.;
Shibasaki, M. J . Am. Chem. Soc. 1999, 121, 4168. (b) Yamada, Y. M.
A.; Yoshikawa, N.; Sasai, H.; Shibasaki, M. Angew. Chem., Int. Ed.
Engl. 1997, 36, 1871. (c) Yamada, Y. M. A.; Shibasaki, M. Tetrahedron
Lett. 1998, 39, 5561. (d) List, B.; Lerner, R. A.; Barbas, C. F., III J .
Am. Chem. Soc. 2000, 122, 2395. (e) Sakthivel, K.; Notz, W.; Bui, T.;
Barbas, C. F., III J . Am. Chem. Soc. 2001, 123, 5260. (f) Notz, W.;
List, B. J . Am. Chem. Soc. 2000, 122, 7386. (g) Trost, B. M.; Ito, H. J .
Am. Chem. Soc. 2000, 122, 12993. (h) Trost, B. M.; Silcoff, E. R.; Ito,
H. Org. Lett, 2001, 3, 2497. (i) Trost, B. M.; Ito, H.; Silcoff, E. R. J .
Am. Chem. Soc. 2001, 123, 3367.
* Corresponding author.
(1) Norcross, R. D.; Paterson, I. Chem. Rev. 1995, 95, 2041.
(2) (a) Carreira, E. M. In Modern Carbonyl Chemistry; Otera, J .,
Ed.; Wiley-VCH: Weinhiem, Germany, 2000; Chapter 8. (b) Palomo,
C.; Oiarbide, M.; Garc´ıa, J . M. Chem. Eur. J . 2002, 8, 37. (c)
Machajewski, T. D.; Wong, C.-H. Angew. Chem., Int. Ed. 2000, 39,
1352. (d) Carreira, E. M. In Comprehensive Asymmetric Catalysis;
J acobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag:
Heidelberg, Germany, 1999; Vol. III, Chapter 29. (e) Saito, S.; Yama-
moto, H. Chem. Eur. J . 1999, 5, 1959. (f) Nelson, S. G. Tetrahedron:
Asymmetry 1998, 357. (g) Gro¨ger, H.; Vogl, E. M.; Shibasaki, M. Chem.
Eur. J . 1998, 4, 1137. (h) Paterson, I.; Cowden, C. J .; Wallace, D. J . In
Modern Carbonyl Chemistry; Otera, J ., Ed.; Wiley-VCH: Weinheim,
Germany, 2000; Chapter 9. (i) Cowden, C. J .; Paterson, I. Org. React.
1997, 51, 1. (j) Heathcock, C. H.; Kim, B. M.; Williams, S. F.;
Masamune, S.; Paterson, I.; Gennari, C. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford,
UK, 1991; Vol. 2.
(3) (a) Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.; Baran, P.
S. Angew. Chem., Int. Ed. 2000, 112, 46. (b) Mukaiyama, T. Tetrahe-
dron 1999, 55, 8609.
10.1021/jo034092x CCC: $25.00 © 2003 American Chemical Society
Published on Web 06/03/2003
J . Org. Chem. 2003, 68, 5045-5055
5045