Chemistry and Applications, Springer, Berlin, 2000; (e) For a recent
special issue on “Fluorine in the Life Sciences”, see: ChemBioChem,
2004, 5, 557–728.
2 A. Leo, C. Hansch and D. Elkins, Chem. Rev., 1971, 71, 525–616.
3 (a) M. Schlosser and D. Michel, Tetrahedron, 1996, 52, 99–108;
(b) D. O’Hagan and H. S. Rzepa, Chem. Commun., 1997, 645–652;
(c) B. E. Smart, J. Fluorine Chem., 2001, 109, 3–11; (d) B. K. Park,
N. R. Kitteringham and P. M. O’Neill, Annu. Rev. Pharmacol. Toxicol.,
2001, 41, 443–470.
4 (a) M. A. McClinton and D. A. McClinton, Tetrahedron, 1992, 48,
6555–6666; (b) P. Lin and J. Jiang, Tetrahedron, 2000, 56, 3635–3671;
(c) B. R. Langlois and T. Billard, Synthesis, 2003, 185–194.
5 I. Ruppert, K. Schlich and W. Volbach, Tetrahedron Lett., 1984, 25,
2195–2198.
6 (a) G. K. S. Prakash and A. K. Yudin, Chem. Rev., 1997, 97, 757–786;
(b) R. P. Singh and J. M. Shreeve, Tetrahedron, 2000, 56, 7613–7632;
(c) G. K. S. Prakash and M. Mandal, J. Fluorine Chem., 2001, 112,
123–131.
7 Some selected examples: (a) T. Brigaud, O. Lefebvre, R. Plantier-Royon
and C. Portella, Tetrahedron Lett., 1996, 37, 6115–6116; (b) R. P. Singh,
G. Cao, R. L. Kirchmeier and J. M. Shreeve, J. Org. Chem., 1999, 64,
2873–2876; (c) J.-C. Blazejewski, E. Anselmi and M. P. Wilmshurst,
Tetrahedron Lett., 1999, 40, 5475–5478; (d) G. K. S. Prakash,
M. Mandal and G. A. Olah, Angew. Chem., Int. Ed., 2001, 40, 589–590;
(e) D. V. Sevenard, P. Kirsch, G.-V. Röschenthaler, V. N. Movchun
and A. A. Kolomeitsev, Synlett, 2001, 379–381; (f) D. V. Sevenard,
V. Ya. Sosnovskikh, A. A. Kolomeitsev, M. H. Königsmann and G. V.
Röschenthaler, Tetrahedron Lett, 2003, 44, 7623–7627.
8 Recent examples: (a) Z. Mincheva, M. Courtois, J. Crèche, M. Rideau
and M.-C. Viaud-Massuard, Bioorg. Med. Chem., 2004, 12, 191–197;
(b) S. M. Capitosti, T. P. Hansen and M. L. Brown, Bioorg. Med.
Chem., 2004, 12, 327–336; (c) A. Leonardi, D. Barlocco, F. Montesano,
G. Cignarella, G. Motta, R. Testa, E. Poggesi, M. Seeber, P. G.
De Benedetti and F. Fanelli, J. Med. Chem., 2004, 47, 1900–1918;
(d) M. L. López-Rodríguez, D. Ayala, A. Viso, B. Benhamú,
R. Fernández de la Pradilla, F. Zarza and J. A. Ramos, Bioorg. Med.
Chem., 2004, 12, 1551–1557; (e) K. Kuramochi, Y. Mizushina,
S. Nagata, F. Sugawara, K. Sakaguchi and S. Kobayashi, Bioorg. Med.
Chem., 2004, 12, 1983–1989.
Interestingly, also in this case, a smaller excess of CF3SiMe3
such as two equivalents did not lead to complete conversion of
the starting amide. Moreover, desilylation of the intermediate silyl
ether took place smoothly under acidic conditions with aqueous
HCl (1 M), while the use of TBAF led to the formation of additional
by-products, presumably again due to ring-opening of the lactam
under basic conditions. As it was the case before, nucleophilic
attack of the trifluoromethylating agent took place regio- and
diastereoselectively at the less hindered position resulting in the
incorporation of the CF3-substituent from the convex exo-face of
the bicycle and at its lower carbonyl group.
The corresponding trifluoromethylation reaction of the
endo,trans-configurated tricyclic scaffold 2313,15 was also accom-
plished in a regio- and diastereoselective fashion from the exo-face,
albeit in this case at the upper carbonyl group, furnishing lactam 24
in 57% chemical yield after hydrolysis.
In conclusion, we have developed a reliable protocol for the
nucleophilic trifluoromethylation of cyclic five-membered imides
using CF3SiMe3 in the presence of TBAF·3H2O, TMAF or CsF
in THF. Application of this method to functionalised bi- and
tricyclic imides resulted in the regio- and diastereoselective forma-
tion of lactams 22 and 24 in good chemical yields, which could
serve as precursors for the synthesis of novel trifluoromethylated
thrombin inhibitors. Work towards the extension of this method to
the synthesis of other perfluoroalkylated lactams is currently under
progress in our laboratories.
This work was supported by the ETH research council. A. H.-R.
thanks the Deutsche Forschungsgemeinschaft DFG, for a post-
doctoral fellowship (Emmy Noether-Programm).
Notes and references
‡ Typical experimental protocol for the nucleophilic trifluoromethylation
using CF3SiMe3: To a solution of the imide (1.00 mmol) in dry THF
(10 cm3) under N2 at 0 °C, CF3SiMe3 (2.00 mmol) and an appropriate
F− source (TBAF·3H2O, CsF or TMAF, 10–20 mol%) were sequentially
added. The resulting suspension was stirred for 2–4 h at 0 °C and was
slowly warmed to room temperature. A solution of TBAF (1 M in THF,
2.0 cm3, 2.00 mmol) was added and after 30 min of additional stirring, the
mixture was hydrolysed with 2 M HCl (15 cm3) and extracted with EtOAc
(3 × 10 cm3). The organic layers were washed with 1 M HCl (10 cm3) and
saturated aqueous NaCl solution (10 cm3), dried (MgSO4) and concentrated
in vacuo. Purification of the resulting residue by flash column chromato-
graphy (SiO2; hexanes/EtOAc 3:1) afforded the desired trifluoromethylated
compounds.
§ Crystal data. Compound 12, C14H14F3NO2 (Mr = 285.26), triclinic,
space group P1, Dc = 1.466 g cm−3, Z = 2, a = 6.4271(3), b = 7.7669(4),
c = 14.1095(8) Å, = 95.290(2)°, = 94.206(2)°, = 111.866(2)°,
V = 646.44(6) Å3, T = 193 K, = 0.126 mm−1. Approximate crystal size
0.22 × 0.03 × 0.02 mm, 2530 unique reflections collected, R1 = 0.0467
based on 1820 reflections with I > 2(I), wR(F2) = 0.1270. CCDC reference
crystallographic data in .cif or other electronic format.
9 R. P. Singh, R. L. Kirchmeier and J. M. Shreeve, J. Org. Chem., 1999,
64, 2579–2581.
10 V. Broicher and D. Geffken, Arch. Pharm. (Weinheim), 1990, 323,
929–931.
11 S. Kantamneni, PhD Thesis, University of South Carolina, 1993.
12 (a) J. A. Olsen, D. W. Banner, P. Seiler, U. Obst-Sander, A. D’Arcy,
M. Stihle, K. Müller and F. Diederich, Angew. Chem., Int. Ed., 2003,
42, 2507–2511; (b) J. A. Olsen, D. W. Banner, P. Seiler, B. Wagner,
T. Tschopp, U. Obst-Sander, M. Kansy, K. Müller and F. Diederich,
ChemBioChem, 2004, 5, 666–675; (c) J. Olsen, P. Seiler, B. Wagner,
H. Fischer, T. Tschopp, U. Obst-Sander, D. W. Banner, M. Kansy,
K. Müller and F. Diederich, Org. Biomol. Chem., 2004, 2, 1339–1352.
13 (a) U. Obst, V. Gramlich, F. Diederich, L. Weber and D. W. Banner,
Angew. Chem., Int. Ed., 1995, 34, 1739–1742; (b) U. Obst, D. W. Banner,
L. Weber and F. Diederich, Chem. Biol., 1997, 4, 287–295; (c) U. Obst,
P. Betschmann, C. Lerner, P. Seiler, F. Diederich, V. Gramlich, L. Weber,
D. W. Banner and P. Schönholzer, Helv. Chim. Acta, 2000, 83, 855–909;
(d) P. Betschmann, S. Sahli, F. Diederich, U. Obst and V. Gramlich,
Helv. Chim. Acta, 2002, 85, 1210–1245.
14 M. Ostendorf, R. Romagnoli, I. Cabeza Pereiro, E. C. Roos, M. J.
Moolenaar, W. N. Speckamp and H. Hiemstra, Tetrahedron: Asymmetry,
1997, 8, 1773–1789 and cited refs.
15 Endo, exo refer to the orientation of the 4-bromophenyl ring at C(4)
with respect to the bicyclic perhydropyrrolo[3,4-c]pyrrole scaffold, and
cis, trans to the position of this ring with respect to the configuration of
C(8a) at the fusion of the two pentagons in the perhydropyrrolizidine
bicycle; for the synthesis of this scaffold, see ref. 13.
1 (a) Fluorine in Bioorganic Chemistry, eds. J. T. Welch and
S. Eshwarakrishnan, Wiley, New York, 1991; (b) Organofluorine
Compounds in Medicinal Chemistry and Biomedical Applications, eds.
R. Filler, Y. Kobayashi and L. M. Yagupolskii, Elsevier, Amsterdam,
1993; (c) Organofluorine Chemistry—Principles and Commercial
Applications, eds. R. E. Banks, B. E. Smart and J. C. Tatlow, Plenum
Press, New York, 1994; (d) T. Hiyama, Organofluorine Compounds,
O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 2 2 6 7 – 2 2 6 9
2 2 6 9