ACS Catalysis
Page 6 of 8
1
2
3
4
5
6
7
8
J. Am. Chem. Soc. 2012, 134, 17877–17880. (m) Cambeiro, F.;
For pioneering work, see: (e) Ye, L.; Cui, L.; Zhang, G.; Zhang,
L. Alkynes as equivalents of α-diazo ketones in generating α-oxo
López, S.; Varela, J. A.; Saá, C. Cyclization by catalytic rutheni-
um carbene insertion into Csp3-H bonds. Angew. Chem., Int. Ed.
2012, 51, 723–727.
(3) Shi, Y.; Gevorgyan, V. Intramolecular transannulation of
alkynyl triazoles via alkyne-carbene metathesis step: access to
fused pyrroles. Org. Lett. 2013, 15, 5394–5396.
metal carbenes:
a gold-catalyzed expedient synthesis of
dihydrofuran-3-ones. J. Am. Chem. Soc. 2010, 132, 3258−3259.
(8) For selected examples, see: (a) Wang, C.-M.; Qi, L.-J.;
Sun, Q.; Zhou, B.; Zhang, Z.-X.; Shi, Z.-F.; Lin, S.-C.; Lu, X.;
Gong, L.; Ye, L.-W. Transition-metal-free oxidative cyclization
of N-propargyl ynamides: stereospecific construction of linear
polycyclic N-heterocycles. Green Chem. 2018, 20, 3271–3278.
(b) Pan, F.; Li, X.-L.; Chen, X.-M.; Shu, C.; Ruan, P.-P.; Shen,
C.-H.; Lu, X.; Ye, L.-W. Catalytic ynamide oxidation strategy
for the preparation of α-functionalized amides. ACS Catal. 2016,
6, 6055–6062. (c) Li, L.; Zhou, B.; Wang, Y.-H.; Shu, C.; Pan,
Y.-F.; Lu, X.; Ye, L.-W. Zinc-catalyzed alkyne oxidation/C-H
functionalization: highly site-selective synthesis of versatile iso-
quinolones and β-carbolines. Angew. Chem., Int. Ed. 2015, 54,
8245-8249. (d) Li, L.; Shu, C.; Zhou, B.; Yu, Y.-F.; Xiao, X.-Y.;
Ye, L.-W. Generation of gold carbenes in water: efficient inter-
molecular trapping of the α-oxo gold carbenoids by indoles and
anilines. Chem. Sci. 2014, 5, 4057–4064.
(9) For selected examples, see: (a) Zhang, Y.; Guo, D.; Ye, S.;
Liu, Z.; Zhu, G. Synthesis of trifluoromethylated naphthoqui-
nones via copper-catalyzed cascade trifluoromethyla-
tion/cyclization of 2-(3-arylpropioloyl)benzaldehydes. Org. Lett.
2017, 19, 1302–1305. (b) Cheng, D.; Wu, L.; Lv, H.; Xu, X.;
Yan, J. CDC reaction and subsequent cyclization for the synthe-
sis of 2-hydroxy-3-alkyl-1,4-naphthoquinones and pyranonaph-
thoquinones. J. Org. Chem. 2017, 82, 1610–1617. (c) Fujii, S.;
Shimizu, A.; Takeda, N.; Oguchi, K.; Katsurai, T.; Shirakawa,
H.; Komai, M.; Kagechika, H. Systematic synthesis and anti-
inflammatory activity of ω-carboxylated menaquinone deriva-
tives-Investigations on identified and putative vitamin K2 me-
tabolites. Bioorg. Med. Chem. 2015, 23, 2344–2352. (d) Molleti,
N.; Singh, V. K. Highly enantioselective synthesis of naphtho-
quinones and pyranonaphthoquinones catalyzed by bifunctional
chiral bis-squaramides. Org. Biomol. Chem. 2015, 13, 5243–
5254. (e) Bhasin, D.; Chettiar, S. N.; Etter, J. P.; Mok, M.; Li,
P.-K. Anticancer activity and SAR studies of substituted 1,4-
naphthoquinones. Bioorg. Med. Chem. 2013, 21, 4662–4669. (f)
Teiten, M. H.; Mack, F.; Debbab, A.; Aly, A. H.; Dicato, M.;
Proksch, P.; Diederich, M. Anticancer effect of altersolanol A, a
metabolite produced by the endophytic fungus Stemphylium
globuliferum, mediated by its pro-apoptotic and anti-invasive po-
tential via the inhibition of NF-κB activity. Bioorg. Med. Chem.
2013, 21, 3850–3858. (g) Ortega, A.; Rincón, Á.; Jiménez-
Aliaga, K. L.; Bermejo-Bescós, P.; Martín-Aragón, S.; Molina,
M. T.; Csákÿ, A. G. Synthesis and evaluation of arylquinones as
BACE1 inhibitors, β-amyloid peptide aggregation inhibitors, and
destabilizers of preformed β-amyloid fibrils. Bioorg. Med. Chem.
Lett. 2011, 21, 2183–2187.
(4) (a) Rao, W.; Koh, M. J.; Li, D.; Hirao, H.; Chan, P. W. H.
Gold-catalyzed cycloisomerization of 1,6-diyne carbonates and
esters to 2,4a-dihydro-1H-fluorenes. J. Am. Chem. Soc. 2013,
135, 7926–7932. (b) Lauterbach, T.; Gatzweiler, S.; Nösel, P.;
Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Carbene transfer-
a new pathway for propargylic esters in gold catalysis. Adv.
Synth. Catal. 2013, 355, 2481–2487. (c) Lauterbach, T.; Higuchi,
T.; Hussong, M. W.; Rudolph, M.; Rominger, F.; Mashima, K.;
Hashmi, A. S. K. Gold-catalyzed carbenoid transfer reactions of
diynes-pinacol rearrangement versus retro-Buchner reaction. Adv.
Synth. Catal. 2015, 357, 775–781. (d) Liu, J.; Chen, M.; Zhang,
L.; Liu, Y. Gold(I)-catalyzed 1,2-acyloxy migration/[3+2]
cycloaddition of 1,6-diynes with an ynamide propargyl ester
moiety: highly efficient synthesis of functionalized
cyclopenta[b]indoles. Chem. - Eur. J. 2015, 21, 1009–1013.
(5) (a) Nꢀsel, P.; dos Santos Comprido, L. N.; Lauterbach, T.;
Rudolph, M.; Rominger, F.; Hashmi, A. S. K. 1,6-Carbene
transfer: gold-catalyzed oxidative diyne cyclizations. J. Am.
Chem. Soc. 2013, 135, 15662–15666. (b) Liu, R.; Winston-
McPherson, G. N.; Yang, Z.-Y.; Zhou, X.; Song, W.; Guzei, I.
A.; Xu, X.; Tang, W. Generation of rhodium(I) carbenes from
ynamides and their reactions with alkynes and alkenes. J. Am.
Chem. Soc. 2013, 135, 8201–8204. (c) Shen, W.-B.; Sun, Q.; Li,
L.; Liu, X.; Zhou, B.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Divergent
synthesis of N-heterocycles via controllable cyclization of azido-
diynes catalyzed by copper and gold. Nat. Commun. 2017, 8,
1748–1756. (d) Zheng, Z.; Zhang, L. C-H insertions in oxidative
gold catalysis: synthesis of polycyclic 2H-pyran-3(6H)-ones via
a relay. Org. Chem. Front. 2015, 2, 1556–1560. (e) Ji, K.; Liu,
X.; Du, B.; Yang, F.; Gao, J. Gold-catalyzed selective oxidation
of 4-oxahepta-1,6-diynes to 2H-pyran-3(6H)-ones and chromen-
3(4H)-ones via β-gold vinyl cation intermediates. Chem. Com-
mun. 2015, 51, 10318–10321. For other examples involving the
metal-alkylidenes, see: (f) Yun, S. Y.; Wang, K.-P.; Kim, M.;
Lee, D. Initiation and termination mode of enyne cross-
metathesis and metallotropic [1,3]-shift controlled by remote
substituents. J. Am. Chem. Soc. 2010, 132, 8840–8841. (g) E. J.
Cho, D. Lee, Substituent effect on the formation and reactivity
of platinum carbenoids. Adv. Synth. Catal. 2008, 350, 2719–
2723. (h) Singh, R.; Schrock, R. R.; Müller, P.; Hoveyda, A. H.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Synthesis of monoalkoxide
monopyrrolyl
complexes
Mo(NR)(CHR′)(OR′′)(pyrrolyl): enyne metathesis with high ox-
idation state catalysts. J. Am. Chem. Soc. 2007, 129, 12654–
12655.
(10) For selected examples, see: (a) Bedford, R. B.; Bowen, J.
G.; Weeks, A. L. Synthesis of murrayaquinone A and analogues
via ring-closing C-H arylation. Tetrahedron 2013, 69, 4389–
4394. (b) Itoigawa, M.; Kashiwada, Y.; Ito, C.; Furukawa, H.;
Tachibana, Y.; Bastow, K. F.; Lee, K. H. Antitumor agents. 203.
carbazole alkaloid murrayaquinone A and related synthetic
carbazolequinones as cytotoxic agents. J. Nat. Prod. 2000, 63,
893–897. (c) Saha, C.; Chowdhury, B. K. Carbazoloquinones
from Murraya koenigii. Phytochemistry 1998, 48, 363–366.
(11) For details, please see the Supporting Information (SI).
(12) Schießl, J.; Schulmeister, J.; Doppiu, A.; Wörner, E.;
Rudolph, M.; Karch, R.; Hashmi, A. S. K. An industrial perspec-
tive on counter anions in gold catalysis: underestimated with re-
spect to “ligand effects”. Adv. Synth. Catal. 2018, 360, 2493–
2502.
(6) For preliminary studies of the generation of endo vinyl
carbenoids via diazo approach, see: (a) Padwa, A.; Krumpe, K.
E.; Kassir, J. M. Rhodium carbenoid mediated cyclizations of o-
alkynyl-substituted α-diazoacetophenones. J. Org. Chem. 1992,
57, 4940–4948. (b) Hoye, T. R.; Dinsmore, C. J. Tandem alkyne
insertion and allyl sulfonium ylide rearrangement of γ, δ-
alkynyl-α′-diazoketones. Tetrahedron Lett. 1992, 33, 169–172.
(7) For reviews on the generation of α-oxo gold carbenes via
gold-catalyzed alkyne oxidation, see: (a) Zheng, Z.; Wang, Z.;
Wang, Y.; Zhang, L. Au-catalysed oxidative cyclisation. Chem.
Soc. Rev. 2016, 45, 4448–4458. (b) Yeom, H.-S.; Shin, S.
Catalytic access to α-oxo gold carbenes by N-O bond oxidants.
Acc. Chem. Res. 2014, 47, 966–977. (c) Zhang, L. A non-diazo
approach to α-oxo gold carbenes via gold-catalyzed alkyne
oxidation. Acc. Chem. Res. 2014, 47, 877–888. (d) Xiao, J.; Li,
X. Gold α-oxo carbenoids in catalysis: catalytic oxygen-atom
transfer to alkynes. Angew. Chem., Int. Ed. 2011, 50, 7226–7236.
(13) (a) Wang, Y.; Ji, K.; Lan, S.; Zhang, L. Rapid access to
chroman-3-ones through gold-catalyzed oxidation of propargyl
aryl ethers. Angew. Chem., Int. Ed. 2012, 51, 1915–1918. (b)
ACS Paragon Plus Environment