Bartoli et al.
SCHEME 1
concerning the simplicity, economy, and atom efficiency
aspects.5 With the aim to improve the reaction’s ef-
ficiency, several heterogeneous catalysts have been stud-
ied, and excellent results have been achieved by using
palladium,6 InCl3,7 bismuth(III) salts,8 and copper salts.9
Despite these results, the methods described require the
use of hazardous solvents and expensive catalyst or a
special treatment for its activation and are also not time
efficient. These aspects are in disagreement with clean
chemistry,10 and hence the challenge for a sustainable
environment calls for the use of alternative procedures
avoiding the use of harmful solvents. The solvent-free
approach11 and, in particular, the use of reagents im-
pregnated over inorganic supports12 can offer a step
forward in this direction even if, for exactness, these
procedures do not meet the definition of ‘no-solvent’. The
solvent is only eliminated at the primary reaction stage,
whereas an appreciable amount of solvent is still required
for the adsorption of reactants and elution of the product
at the pre- and post-reaction stages, respectively. Thus,
with this increase of environmental consciousness in
chemical research, the solvent-free Michael addition has
attracted our attention, and in the course of our ongoing
program to develop synthetic protocols using cerium
trichloride,13 we have recently reported that a CeCl3‚
7H2O/NaI combination supported on silica gel is able to
promote the Michael addition of indoles to electron-poor
alkenes.14
versatile building blocks for the preparation of many
nitrogen-containing biologically important compounds.16
Herein we report the extension of our results, and we
have been able to generalize the original route and to
expand its scope, thereby providing ready access to a new
promoter system that allows various nucleophiles to react
with carbon-carbon double bonds conjugated with a
strong electron-withdrawing group (EWG). In particular
we report the advantages obtained in Michael additions
promoted by the CeCl3‚7H2O/NaI combination utilizing
other inorganic supports than silica gel.
Results and Discussion
Since in our preliminary experiments aimed to obtain
â-amino ketones via aza-Michael addition of amines to
(E)-R,â-unsaturated ketones in the presence of CeCl3‚
7H2O/NaI/SiO2 the starting material was completely
recovered, consistent with the well-documented17 insta-
bility of â-amino carbonyl compounds on silica gel,18 we
thought to circumvent this problem by changing the
inorganic material support. It is known, in fact, that
alumina (Al2O3) is a particularly interesting metal oxide
widely used to carry out surface organic chemistry,19 and
we tested the neutral alumina (Fluka, neutral, Brockman
activity, grade 1, 150 mesh) as support of our Lewis acid
promoter.Immobilization of CeCl3‚7H2O/NaI system by
stirring an acetonitrile mixture of CeCl3‚7H2O/NaI with
neutral Al2O3 at room temperature and then removing
the solvent by rotary evaporation at 35 °C affords the
heterogeneous Lewis acid promoter. Promoter activity of
this powder is not weakened by absorption of moisture
from the air, and such a system can be stored for long
periods without any appreciable loss of the activity. Then,
we found that with this new CeCl3‚7H2O/NaI/Al2O3
promoter system the Michael addition of nucleophiles 1
to electron-deficient alkenes 2 was achieved in good yields
(Table 1). In the absence of alumina, the reaction gave
very low yields of adducts and many side products were
formed. Moreover the yields were improved when the
We next attempted to extend our solventless methodol-
ogy to aza-Michael additions, and in pioneering studies15
we have reported, by addition of secondary amines to (Z)-
R,â-enones, the synthesis of â-amino ketones, which are
(4) Cardillo, G.; Tomasini, C. Chem. Soc. Rev. 1996, 117-128.
(5) (a) Fadini, L.; Togni, A. Chem. Commun. 2003, 30-31. (b) Sani,
M.; Briche, L.; Chiva, G.; Fustero, S.; Piera, J.; Volonterio, A.; Zanda,
M. Angew. Chem., Int. Ed. 2003, 22, 2060-2063. (c) Zhuang, W.;
Hazell, R. G.; Jorgensen, K. A. Chem. Commun. 2001, 1240-1241. (d)
Yamamoto, H. Lewis Acids in Organic Synthesis; Wiley-VCH Inc.:
Weinheim, Germany, 2000. (e) Trost, B. M. Science 1991, 245, 1471-
1477.
(6) Kawatsura, M.; Hartwig, J. F. Organometallics 2001, 20, 1960-
1964.
(7) Leh, T. P.; Wei, L. L. Synlett 1998, 975-976.
(8) (a) Srivastava, N.; Banik, B. K. J. Org. Chem. 2003, 68, 2109-
2114. (b) Varala, R.; Alam, M. M.; Adapa, S. R. Synlett 2003, 720-
722.
(9) Xu, L.-W.; Li, J.-W.; Xia, C.-G.; Zhou, S.-L.; Hu, X.-X. Synlett
2003, 2425-2427.
(10) For general references on green chemistry, see: (a) Anastas,
P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford
University Press: Oxford, 1998. (b) Anastas, P. T.; Williamson, T. C.
Green Chemistry: Designing Chemistry for the Environment; ACS
Symposium Series 626; American Chemical Society: Washington, DC,
1996.
(16) (a) Juaristi, E.; Lopez-Ruiz, H. Curr. Med. Chem. 1998, 6, 983-
987. (b) Seebach, D.; Matthews, J. L. Chem. Commun. 1997, 2015-
2016. (c) Traxler, P.; Trinks, U.; Buchdunger, E.; Mett, H.; Meyer, T.;
Mu¨ller, M.; Regenass, U.; Ro¨sel, J.; Lydon, N. J. Med. Chem. 1995,
38, 2441-2448.
(17) (a) Gaunt, M. J.; Spencer, J. B. Org. Lett. 2001, 3, 25-28. (b)
Vazquez, E.; Galindo, A.; Gnecco, D.; Bernes, S.; Teran, J. L.; Enriquez,
R. G. Tetrahedron: Asymmetry 2001, 12, 3209-3211. (c) Chesney, A.;
Marko, I. E. Synlett 1992, 275-278. (d) Meyers, A. I.; Berney, D. J.
Org. Chem. 1989, 54, 4673-4676.
(18) Treatment of â-amino ketone 3ab with SiO2 caused an elimina-
tion of 1 equiv of amine, leading to R,â-enone 2b. This result is
consistent with reversibility of the Michael reaction in the presence of
silica gel.
(19) Maggi, R.; Ballini, R.; Sartori, G.; Sartorio, R. Tetrahedron Lett.
2004, 45, 2297-2299. (b) Kozlov, A. I.; Kung, M. C.; Hue, W. M.; Kung,
H. H. Angew. Chem., Int. Ed. 2003, 42, 2415-2418. (c) Bhar, S.;
Chaudhuri, S. K.; Sahu, S. G.; Panja, C. Tetrahedron 2001, 57, 9011-
9016. (d) Kabalka, G. W.; Pagni, R. M. Tetrahedron 1997, 53, 7999-
8065. (e) Ranu, B. C.; Bahr, S. Tetrahedron 1992, 48, 1327-1332. (f)
Pelletier, S. W.; Venkov, A. P.; Finer- Moore, J.; Mody, N. V.
Tetrahedron Lett. 1980, 21, 809-812. (g) Posner, G. H. Angew. Chem.,
Int. Ed. Engl. 1978, 17, 487-496.
(11) (a) Bartoli, G.; Bosco, M.; Dalpozzo, R.; Marcantoni, E.; Mas-
saccesi, M.; Rinaldi, S.; Sambri, L. Synlett 2003, 39-42. (b) Tanaka,
K.; Toda, F. Chem. Rev. 2000, 100, 1025-1074.
(12) (a) Ley, S. V.; Baxendale, I. R.; Lee, A.-L. J. Chem. Soc., Perkin
Trans. 1 2002, 1850-1857. (b) Christoffers, J.; Mann, A. Eur. J. Org.
Chem. 2000, 1977-1982. (c) Varma, R. S. Green Chem. 1999, 1, 43-
48. (d) Metzger, J. O. Angew. Chem., Int. Ed. 1998, 37, 2975-2978.
(e) Cornelis, A.; Laszlo, P. Synlett 1994, 155-161. (f) Laszlo, P. In Solid
Supports and Catalysts in Organic Synthesis; Smith, K., Ed.; Har-
wood: Chichester, 1992; pp 288-301.
(13) Bartoli, G.; Marcantoni, E.; Sambri, L. Synlett 2003, 2101-
2116 and references therein.
(14) (a) Bartoli, G.; Bosco, M.; Giuli, S.; Giuliani, A.; Lucarelli, L.;
Marcantoni, E.; Sambri, L.; Torregiani, E. Manuscript submitted for
publication. (b) Bartoli, G.; Bosco, M.; Folgia, G.; Giuliani, A.; Mar-
cantoni, E.; Sambri, L. Synthesis 2004, 895-900. (c) Bartoli, G.;
Bartolacci, M.; Bosco, M.; Foglia, G.; Giuliani, A.; Marcantoni, E.;
Sambri, L.; Torregiani, E. J. Org. Chem. 2003, 68, 4594-4597.
(15) Bartoli, G.; Bosco, M.; Marcantoni, E.; Petrini, M.; Sambri, L.;
Torregiani, E. J. Org. Chem. 2001, 66, 9052-9055.
170 J. Org. Chem., Vol. 70, No. 1, 2005