D
S. Frippiat et al.
Letter
Synlett
was also developed, albeit giving a lower, but still useful,
68% yield of 3c. In addition, Sonogashira couplings of 2i
with ethynylbenzene or ethynyl(trimethyl)silane (the most
frequently used substrates for this reaction) gave 5a and 5b,
respectively, in yields of 82 and 79% yields. We believe that
these compounds are the first reported imidazolones con-
taining an alkyne substituent at C2.
Finally, we were interested in comparing our protocol
with the method developed by Zhu and co-workers,15 in-
volving -isocyanoesters, with an arylation procedure
starting from the analogous -isocyanoamide under the
same experimental conditions. The 51% yield of compound
3b (Scheme 6) shows that these conditions afforded a simi-
lar yield when using the amide substrate to that previously
obtained starting from the methyl ester (57%). Arylation
starting from the ester is more convenient because the
need for prior preparation of the amide is avoided although,
in our protocol, no further amidification of the transient
amidine is required.
Funding Information
This work has been partially supported by INSA Rouen, Rouen Univer-
sity, CNRS, EFRD, European INTERREG IV A France (Channel) and
Labex SynOrg (ANR-11-LABX-0029). S.F. is grateful to the Region Nor-
mandie for a grant.
I
nstitut
N
ati
o
n
a
ldes
S
c
i
e
n
c
es
A
p
p
l
i
q
u
é
es
R
o
u
e
n
()U
n
i
v
ersité
d
e
R
o
u
e
n
()
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
References and Notes
(1) (a) Chen, Y.; O’Connor, S. J.; Gunn, D.; Newcom, J.; Chen, J.; Yi, L.;
Zhang, H.-J.; Hunyadi, L. M.; Natero, R. WO 2004058727, 2004.
(b) Murugesan, N.; Tellew, J. E.; Macor, J. E.; Gu, Z. WO
200001389, 2000. (c) Murugesan, N.; Tellew, J. E.; Macor, J. E.;
Gu, Z. US 20020143024, 2002. (d) Ye, P.; Sargent, K.; Stewart, E.;
Liu, J.-F.; Yohannes, D.; Yu, L. J. Org. Chem. 2006, 71, 3137.
(e) Malamas, M. S.; Erdei, J. J.; Fobare, W. F.; Quagliato, D. A.;
Antane, S. A.; Robichaud, A. J. US 20070072925, 2007. (f) Berg,
S.; Holenz, J.; Hoegdin, K.; Kihlstroem, J.; Kolmodin, K.;
Lindstroem, J.; Plobeck, N.; Rotticci, D.; Sehgelmeble, F.;
Wirstam, M. WO 2007145569, 2007. (g) Berg, S.; Hallberg, J.;
Hoegdin, K.; Karlstroem, S.; Kers, A.; Plobeck, N.; Rakos, L. WO
2008076044, 2008. (h) Bignan, G. C.; Connolly, P. J.; Lu, T. L.;
Parker, M. H.; Ludovici, D.; Meyer, C.; Meerpoel, L.; Smans, K.;
Rocaboy, C. WO 2014039769, 2014.
(2) (a) Yampolsky, I. V.; Kislukhin, A. A.; Amatov, T. T.; Shcherbo, D.;
Potapov, V. K.; Lukyanov, S.; Lukyanov, K. A. Bioorg. Chem. 2008,
36, 96. (b) Wu, L.; Burgess, K. J. Am. Chem. Soc. 2008, 130, 4089.
(3) (a) Erlenmeyer, E. Jr. Liebigs Ann. Chem. 1893, 275, 1. For exam-
ples of transformations of oxazolones into imidazolones by con-
densation reactions, see: (b) Muselli, M.; Colombeau, L.;
Hédouin, J.; Hoarau, C.; Bischoff, L. Synlett 2016, 27, 2819; and
references cited therein.
(4) (a) Oumouch, S.; Bourotte, M.; Schmitt, M.; Bourguignon, J.-J.
Synthesis 2005, 25. (b) Gosling, S.; Rollin, P.; Tatibouet, A. Syn-
thesis 2011, 3649.
(5) Muselli, M.; Baudequin, C.; Hoarau, C.; Bischoff, L. Chem.
Commun. 2015, 51, 745.
(6) Muselli, M.; Baudequin, C.; Perrio, C.; Hoarau, C.; Bischoff, L.
Chem. Eur. J. 2016, 22, 5520.
(7) Bossio, R.; Marcaccini, S.; Pepino, R.; Polo, C.; Valle, G. Synthesis
1989, 641.
(8) García-Valverde, M.; Marcaccini, S.; González-Ortega, A.; Javier
Rodríguez, F.; Rojo, J.; Torroba, T. Org. Biomol. Chem. 2013, 11,
721.
(9) Mossetti, R.; Pirali, T.; Cesare Tron, G.; Zhu, J. Org. Lett. 2010, 12,
820.
(10) Bonne, D.; Dekhane, M.; Zhu, J. Org. Lett. 2005, 7, 5285.
(11) (a) Bossio, R.; Marcaccini, S.; Papaleo, S.; Pepino, R. J. Heterocycl.
Chem. 1994, 31, 397. (b) Bossio, R.; Marcaccini, P.; Paoli, P.;
Papaleo, S.; Pepino, R.; Polo, C. Liebigs Ann. Chem. 1991, 843.
(12) Yan, Q.; Carroll, P. J.; Gau, M. R.; Winkler, J. D.; Joullié , M. M. Org.
Lett. 2019, 21, 6619.
I
O
Bn
+
N
H
5 mol% Pd(OAc)2, 10 mol% PPh3
O
Ph
N+
2 equiv Cu2O, DMF, 130 °C
C–
N
1
R = Me: 3b, yield = 51%
N
(1.5 equiv)
1 equiv Ar-Pd-I⋅TMEDA complex
CH2Cl2, rt, 30 min
R
R = H: 3a: 79%; R = Me: 3b: 86%; R = OMe: 3c: 87%; R = CN: 3d: 76%
Scheme 6 Ring closure with palladium complexes, under catalytic or
stoichiometric conditions; Ar = Ph, 4-Me-C6H4, 4-MeO-C6H4, 4-CN-C6H4
Nevertheless, we were interested in knowing whether
the reaction with the isocyanide itself required high tem-
peratures. For this purpose, we focused on various previ-
ously prepared stable palladium complexes described in the
literature,17 which were used in stochiometric amounts in a
direct reaction with the isocyanoamide 1. This allowed us
to gain a better understanding of the reactivity of such sub-
strates, because high yields of the isolated compounds were
obtained under mild conditions (room temperature, di-
chloromethane, 30 minutes), indicating the isocyanide has
a high reactivity and that ring closure with the nitrogen
atom of the amide occurs immediately.
In conclusion, we have revealed a previously unexplored
aspect of the formation of imidazolones through a ring-
closing reaction of isocyanoamide 1. Surprisingly, given the
potential of such molecules as biologically active materials,
some simple conversions involving this method in this se-
ries have not been previously developed. This protocol
should pave the way towards a higher molecular diversity
in this field.
(13) Gesù , A.; Pozzoli, C.; Torre, E.; Aprile, S.; Pirali, T. Org. Lett. 2016,
18, 1992.
(14) Clemenceau, A.; Wang, Q.; Zhu, J. Org. Lett. 2017, 19, 4872.
(15) Clemenceau, A.; Wang, Q.; Zhu, J. Org. Lett. 2018, 20, 126.
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–E