S. Dixon, R. J. Whitby / Tetrahedron Letters 47 (2006) 8147–8150
8149
Elbing, M.; Mayor, M.; Weber, H. B. Faraday Discuss.
2006, 131, 281.
4. (a) Bratkovsky, A. M.; Kornilovitch, P. E. Phys. Rev. B
2003, 67, 115307; (b) Basch, H.; Cohen, R.; Ratner, M. A.
Nano Lett. 2005, 5, 1668.
precipitation from the reaction mixture with water, rep-
resenting an important practical improvement upon the
use of earlier described molecular wires incorporating
labile protecting groups on sulfur. The ‘2-ring’ analogue
4,40-(ethyne-1,2-diyl)dibenzonitrile (7) is known18 and
displays a good solubility in common organic solvents
without the necessity for alkoxy substituents. Hence 7
was simply obtained via cross-coupling between 4-bro-
mobenzonitrile and 4-ethynylbenzonitrile.
5. Xu, B.; Tao, N. J. Science 2003, 301, 1221.
6. Kim, B.; Beebe, J. M.; Jen, Y.; Zhu, X.-Y.; Frisbie, C. D.
J. Am. Chem. Soc. 2006, 128, 4970; Isonitriles are unstable
under ambient conditions when absorbed on gold: Sta-
pleton, J. J.; Daniel, T. A.; Uppili, S.; Cabarcos, O. M.;
Naciri, J.; Shashidhar, R.; Allara, D. L. Langmuir 2005,
21, 11061.
n
Compounds 7–9, together with commercially available
1,4-dicyanobenzene (6), constitute a suitable array of
precursor molecules to the desired bis-thioamide termi-
nated molecular wires.19
7. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron
Lett. 1975, 16, 4467.
8. (a) Tour, J. M.; Rawlett, A. M.; Kozaki, M.; Yao, Y.;
Jagesson, R. C.; Dirk, S. M.; Price, D. W.; Reed, M. A.;
Zhou, C.-W.; Chen, J.; Wang, W.; Campbell, I. Chem.
Eur. J. 2001, 7, 5118; (b) Wang, C.; Batsanov, A. S.;
Bryce, M. R. J. Org. Chem. 2006, 71, 108; (c) Pearson, D.
L.; Tour, J. M. J. Org. Chem. 1997, 62, 1376; (d) Wang,
C.; Batsanov, A. S.; Bryce, M. R.; Sage, I. Org. Lett. 2004,
6, 2181; (e) Flatt, A. K.; Dirk, S. M.; Henderson, J. C.;
Shen, D. E.; Su, J.; Reed, M. A.; Tour, J. M. Tetrahedron
2003, 59, 8555; (f) Li, G.; Wang, X.; Wang, F. Tetrahedron
Lett. 2005, 46, 8971.
The conditions developed for thioamide synthesis above
were applied to bis-nitriles 6–9 and 3 equiv of ammo-
nium sulfide was found to be optimal for the clean thio-
nation of each nitrile group. Hence, the conversion to
bis-thioamide terminated molecular wires 10–13 was
effected under mild conditions in good to excellent yields
(Scheme 1).16
9. 2-(4-Pyridynyl)ethyl (Yu, C. J.; Chong, Y.; Kayyen, J. F.;
Gozin, M. J. Org. Chem. 1999, 64, 2070), 2-cyanoethyl8d
and 2-(trialkylsilyl)ethyl8e protecting groups display an
improved stability under the basic conditions of Sono-
gashira coupling; however, in situ deprotection conditions
are not suitable for self-assembly on gold. Deprotection as
a separate reaction, usually followed by acetylation ready
for in situ deprotection, is required.
In summary, we have demonstrated the first synthesis of
bis-thioamide terminated molecular wires to be straight-
forward, clean and high yielding. Studies on the electri-
cal characteristics of these molecules will be reported
elsewhere.
10. No evidence for a nitrogen–gold bond was reported
following the chemisorption of structurally analogous
thiourea to gold: Yamaguchi, A.; Penland, R. B.; Mizu-
shima, S.; Lane, T. J.; Curran, C.; Quagliano, J. V. J. Am.
Chem. Soc. 1958, 80, 527.
Acknowledgements
We thank the EPSRC for funding this work through an
adventurous chemistry research Grant No. EP/
C528824/1.
11. Aoki, H.; Buhlmann, P.; Umezawa, Y. J. Electroanal.
¨
Chem. 1999, 473, 105.
12. Bagley, M. C.; Chapaneri, K.; Glover, C.; Merritt, E. A.
Synlett 2004, 14, 2615.
13. Sonogashira coupling between 4-bromobenzonitrile and
phenylacetylene under the standard conditions furnished 1
in 88% isolated yield.
References and notes
1. Selzer, Y.; Allara, D. L. Annu. Rev. Phys. Chem. 2006, 57,
593; James, D. K.; Tour, J. M. Chem. Mater. 2004, 16,
4423; Salomon, A.; Cahen, D.; Lindsay, S.; Tomfohr, J.;
Engelkes, V. B.; Frisbie, C. D. Adv. Mater. 2003, 15, 1881.
2. Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour,
J. M. Science 1997, 278, 252; Cui, X. D.; Primak, A.;
Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.;
Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Science
2001, 294, 571; Tour, J. M. Acc. Chem. Res. 2000, 33, 791;
Xiao, X. Y.; Xu, B. Q.; Tao, N. J. Nano Lett. 2004, 4, 267;
Weber, H. B.; Reichert, J.; Weigend, F.; Ochs, R.;
Beckmann, D.; Mayor, M.; Ahlrichs, R.; von Lohneysen,
H. Chem. Phys. 2002, 281, 113; Haiss, W.; Nichols, R. J.;
van Zalinge, H.; Higgins, S. J.; Bethell, D.; Schiffrin, D. J.
Phys. Chem. Chem. Phys. 2004, 6, 4330; Ishizuka, K.;
Suzuki, M.; Fuju, S.; Takayama, Y.; Sato, F.; Fujihira, M.
Jpn. J. Appl. Phys. 2006, 45, 2037.
3. (a) Ulrich, J.; Esrail, D.; Pontius, W.; Venkataraman, L.;
Millar, D.; Doerrer, L. H. J. Phys. Chem. B 2006, 110,
2462; (b) Ramachandran, G. K.; Hopson, T. J.; Rawlett,
A. M.; Nagahara, L. A.; Primak, A.; Lindsay, S. M.
Science 2003, 300, 1413; (c) Moore, A. M.; Damiron, A.
A.; Mantooth, B. A.; Smith, R. K.; Fuchs, D. J.; Ciszek, J.
W.; Maya, F.; Yao, Y.; Tour, J. M.; Weiss, P. S. J. Am.
Chem. Soc. 2006, 128, 1959; (d) Ochs, R.; Secker, D.;
´
14. (a) Loupy, A.; Sansoulet, J.; Dıez-Barra, E.; Carrilla, J. R.
Synth. Commun. 1991, 21, 1465; (b) Shirai, Y.; Zhao, Y.;
Cheng, L.; Tour, J. M. Org. Lett. 2004, 6, 2129.
15. Musso, D. L.; Clarke, M. J.; Kelley, J. L.; Boswell, G. E.;
Chen, G. Org. Biomol. Chem. 2003, 1, 498.
16. Typical procedures. 4,40-(2,5-Bis(octyloxy)-1,4-phenyl-
ene)bis(ethyne-2,1-diyl)dibenzonitrile (8). To a stirred
solution of 1,4-diiodo-2,5-bis(octyloxy)benzene (3)
(586.4 mg, 1.0 mmol), PdCl2 (17.7 mg, 0.1 mmol), PPh3
(52.5 mg, 0.2 mmol) and CuI (38.1 mg, 0.2 mmol) in THF
(5 mL) was added a solution of 4-ethynylbenzonitrile
(254 mg, 2.0 mmol) (4) in THF (10 mL) followed by
triethylamine (0.84 mL, 6.0 mmol). The mixture was
stirred in the dark at room temperature for 16 h before
pouring onto H2O (150 mL), extraction with CH2Cl2
(2 · 150 mL), drying over MgSO4 and concentration in
vacuo. Purification by column chromatography (SiO2,
eluted with 2:1 CH2Cl2–hexane) gave the title compound
(8) as an off-white solid (492 mg, 84%) mp 104–107 ꢁC. 1H
NMR (400 MHz, CDCl3): d = 7.57 (4H, d, J = 8.7 Hz),
7.52 (4H, d, J = 8.7 Hz), 6.94 (2H, s), 3.96 (4H, t,
J = 6.3 Hz), 1.81–1.74 (4H, m), 1.50–1.42 (4H, m), 1.34–
1.14 (16H, m), 0.80 (6H, t, J = 7.3 Hz) ppm. 13C NMR
(100.5 MHz, CDCl3): d = 154.10 (s), 132.25 (d), 132.20