10.1002/anie.202000859
Angewandte Chemie International Edition
COMMUNICATION
Goldberg, J. G. Kettle, T. Kogej, M. W. D. Perry, N. P. Tomkinson,
Drug Discovery Today 2015, 20, 11.
[3]D. C. Blakemore, L. Castro, I. Churcher, D. C. Rees, A. W. Thomas,
D. M. Wilson, A. Wood, Nat. Chem. 2018, 10, 383.
[4] a) P. Skolnick, P. Popik, A. Janowsky, B. Beer, A. S. Lippa, Eur. J.
Pharmacol. 2003, 461, 99; b) D. M. Marks, C.-U. Pae, A. A. Patkar,
Psychiatry Investig. 2008, 5, 142; c) F. P. Bymaster, K.
Golembiowska, M. Kowalska, Y. K. Choi, F. I. Tarazi, Synapse
2012, 66, 522.
[5] a) G. Kim, M. Y. Chu-Moyer, S. J. Danishefsky, J. Am. Chem. Soc.
1990, 112, 2003; b) T. D. Gootz, R. Zaniewski, S. Haskell, B.
Schmieder, J. Tankovic, D. Girard, P. Courvalin, R. J. Polzer,
Antimicrob. Agents Chemother. 1996, 40, 2691.
TZVP//B3LYP-D3/6-31g(d,p), SDD(Pd) level of theory, aiming to
understand the origin of enantioselectivity (Fig 3). Firstly, we
determined that electrostatic interaction of the sulfonamide group
of 1a with the electropositive Pd center significantly stabilized the
insertion transition states, by around 2 kcalmol-1.[34] The PdO
distances were 3.14 Å in both transition states. Secondly, the two
transition states are 4.1 kcalmol-1 apart in energy, consistent with
experimental 97% ee of 2a. Thirdly, careful examination of the
disfavored transition structure (see the right of Fig 3) revealed that
congestion between dimethylallenyl fragment of 1a and one of top
P-phenyl rings of Norphos is the key factor contributing to
destabilization of the transition state.
[6] S. F. McHardy, S. D. Heck, S. Guediche, M. Kalman, M. P. Allen,
M. Tu, D. K. Bryce, A. W. Schmidt, M. Vanase-Frawley, E.
Callegari, et al., MedChemComm 2011, 2, 1001.
[7] F. G. Njoroge, K. X. Chen, N.-Y. Shih, J. J. Piwinski, Acc. Chem.
Res. 2008, 41, 50.
[8] Examples: a) A. R. Renslo, H. Gao, P. Jaishankar, R.
Venkatachalam, M. Gómez, J. Blais, M. Huband, J. V. N. Vara
Prasad, M. F. Gordeev, Bioorg. Med. Chem. Lett. 2006, 16, 1126;
b) T. Komine, A. Kojima, Y. Asahina, T. Saito, H. Takano, T.
Shibue, Y. Fukuda, J. Med. Chem. 2008, 51, 6558; c) F. Micheli,
P. Cavanni, R. Arban, R. Benedetti, B. Bertani, M. Bettati, L.
Bettelini, G. Bonanomi, S. Braggio, A. Checchia, et al., J. Med.
Chem. 2010, 53, 2534; d) D. Moffat, S. Patel, F. Day, A. Belfield,
A. Donald, M. Rowlands, J. Wibawa, D. Brotherton, L. Stimson, V.
Clark, et al., J. Med. Chem. 2010, 53, 8663; e) G. Lunn, B. J.
Banks, R. Crook, N. Feeder, A. Pettman, Y. Sabnis, Bioorg. Med.
Chem. Lett. 2011, 21, 4608.
[9] Examples: a) F. Micheli, P. Cavanni, D. Andreotti, R. Arban, R.
Benedetti, B. Bertani, M. Bettati, L. Bettelini, G. Bonanomi, S.
Braggio, et al., J. Med. Chem. 2010, 53, 4989; b) R. A. Comley, C.
A. Salinas, M. Slifstein, M. Petrone, C. Marzano, I. Bennacef, P.
Shotbolt, J. Van der Aart, M. Neve, L. Iavarone, et al., J.
Pharmacol. Exp. Ther. 2013, 346, 311.
Fig 3. A favored transition state (left) and a disfavored transition state
(right) for insertion of the allenyl-Pd on alkene fragment. Atoms are colored
in purple (N), red (O), yellow (S) and orange (P) and blue (Pd),
respectively. The 3,3-dimethylallenyl fragment on Pd is highlighted in neon
green.
In conclusion, we have developed an intramolecular reductive
Heck cyclization of 1,6-enynes to generate medicinally important
aza[3.1.0]bicycles in excellent ee values. Furthermore, the key
alkenyl Pd species can be trapped by terminal alkynes to give
alkynylation adducts.
[10] D. Amantini, R. Di Fabio, 3-Azabicyclo[4. 1.0]heptanes used as
orexin antagosnists, WO 122151 A1, 2010.
[11] a) C. Laroche, P. Bertus, J. Szymoniak, Tetrahedron Lett. 2003,
44, 2485; b) M. A. Ischay, M. K. Takase, R. G. Bergman, J. A.
Ellman, J. Am. Chem. Soc. 2013, 135, 2478; c) J. J. Topczewski,
P. J. Cabrera, N. I. Saper, M. S. Sanford, Nature 2016, 531, 220;
d) H. Deng, W.-L. Yang, F. Tian, W. Tang, W.-P. Deng, Org. Lett.
2018, 20, 4121; e) T. Shimbayashi, G. Matsushita, A. Nanya, A.
Eguchi, K. Okamoto, K. Ohe, ACS Catal. 2018, 8, 7773.
Acknowledgement
[12] a) V. V. Tverezovsky, M. S. Baird, I. G. Bolesov, Tetrahedron
1997, 53, 14773; b) H. Lebel, J.-F. Marcoux, C. Molinaro, A. B.
Charette, Chem. Rev. 2003, 103, 977; c) M. A. A. Walczak, P. Wipf,
J. Am. Chem. Soc. 2008, 130, 6924; d) X. Huang, S. Klimczyk, L.
F. Veiros, N. Maulide, Chem. Sci. 2013, 4, 1105; e) H.-D. Xu, K.
Xu, Z.-H. Jia, H. Zhou, P. Jiang, X.-L. Lu, Y.-P. Pan, H. Wu, Y.
Ding, M.-H. Shen, et al., Asian J. Org. Chem. 2014, 3, 1154; f) T.
Kimura, N. Wada, T. Tsuru, T. Sampei, T. Satoh, Tetrahedron
2015, 71, 5952.
[13] Examples: a) Y. Harrak, C. Blaszykowski, M. Bernard, K. Cariou,
E. Mainetti, V. Mouriès, A.-L. Dhimane, L. Fensterbank, M.
Malacria, J. Am. Chem. Soc. 2004, 126, 8656; b) M. R. Luzung, J.
P. Markham, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 10858; c)
V. Mamane, T. Gress, H. Krause, A. Fürstner, J. Am. Chem. Soc.
2004, 126, 8654; d) A. Buzas, F. Gagosz, J. Am. Chem. Soc. 2006,
128, 12614; e) F. Monnier, C. Vovard-Le Bray, D. Castillo, V.
Aubert, S. Dérien, P. H. Dixneuf, L. Toupet, A. Ienco, C. Mealli, J.
Am. Chem. Soc. 2007, 129, 6037; f) K. Komeyama, N. Saigo, M.
Miyagi, K. Takaki, Angew. Chem., Int. Ed. 2009, 48, 9875; g) T. W.
Lyons, M. S. Sanford, Tetrahedron 2009, 65, 3211; h) J.-J. Feng,
J. Zhang, J. Am. Chem. Soc. 2011, 133, 7304; i) P. Pérez-Galán,
E. Herrero-Gómez, D. T. Hog, N. J. A. Martin, F. Maseras, A. M.
Echavarren, Chem. Sci. 2011, 2, 141; j) D. Qian, J. Zhang, Chem.
Commun. 2011, 47, 11152; k) D. Vasu, H.-H. Hung, S. Bhunia, S.
A. Gawade, A. Das, R.-S. Liu, Angew. Chem., Int. Ed. 2011, 50,
6911; l) T. Haven, G. Kubik, S. Haubenreisser, M. Niggemann,
Angew. Chem., Int. Ed. 2013, 52, 4016; m) K.-B. Wang, R.-Q. Ran,
We acknowledge financial support from Peking University
Shenzhen Graduate School, Shenzhen Bay Laboratory
(21230011-Scripps), National Natural Science Foundation of
China (NSFC 21933004), Nanyang Technological University,
GSK-EDB Trust Fund (2017 GSK-EDB Green and Sustainable
Manufacturing Award) and A*STAR Science and Engineering
Research Council (AME IRG A1783c0010). MP contributed DFT
calculations. We thank Dr Li Yongxin at NTU for X-ray diffraction.
Conflict of interest
The authors declare no conflict of interest
Keywords: palladium catalysis • reductive Heck reaction •
alkynylation • privileged scaffold • azabicycles
[1] E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57,
10257.
[2] a) F. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52,
6752; b) T. J. Ritchie, S. J. F. Macdonald, R. J. Young, S. D.
Pickett, Drug Discovery Today 2011, 16, 164; c) A. Nadin, C.
Hattotuwagama, I. Churcher, Angew. Chem. Int. Ed. 2012, 51,
1114; d) F. Lovering, Medchemcomm 2013, 4, 515; e) F. W.
This article is protected by copyright. All rights reserved.