transparency. Compound 2[3] exhibits a mb(0) value twice as
large as that for compound 3[1] for a similar molecular weight
while remaining significantly blue-shifted. Elongation of the
polyenic chain of derivatives of series 2 is thus preferable—in
terms of nonlinearity–transparency trade-off—to turning to a
stronger acceptor moiety.
Finally, cationic polyenic push–pull chromophores have been
synthesised and their optical non-linearities studied for the first
time by electric field induced second harmonic generation in
solution, owing to the formation of ion pairs in a solvent of low
relative permittivity. Their quadratic nonlinearities can be
enhanced by increasing the polyenic chain length and/or
adjusting the charged heterocyclic acceptor. Recent second
harmonic generation and two-photon excited fluorescence
experiments reported in ref. 12 provide evidence that chromo-
phores of type 2 are incorporated in the outer leaflet of model
bilayer lipid membranes and orientated perpendicular to the
membrane surface. These amphiphilic chromophores hold
promise as sensitive probes for SHG imaging of membrane
potentials.3,13 In addition, incorporation of the chromophores in
the lipid bilayer is expected to significantly influence the
molecular nonlinear responses, as shown recently for the
inclusion of a stilbazolium dye in a supramolecular com-
plex.14
The Délégation Générale pour l’Armement (DGA) is ac-
knowledged for a fellowship to V.A. We thank Idrissa Njabira
for his participation in EFISH measurements.
Notes and references
1 Molecular Nonlinear Optics: Materials, Physics and Devices, ed. J.
Zyss, Academic Press, Boston, 1994; Nonlinear Optics of Organic
Molecules and Polymers, ed. H. S. Nalwa and S. Miyata, CRC Press,
1994.
2 K. B. Eisenthal, Chem. Rev., 1996, 96, 1343.
3 A. Lewis, A. Khatchatouriants, M. Treinin, Z. Chen, G. Peleg, N.
Friedman, O. Bouevitch, Z. Rothman, L. Loew and M. Sheres, Chem.
Phys., 1999, 245, 133.
4 S. R. Marder, J. W. Perry and W. P. Schaefer, Science, 1989, 245,
626.
5 I. R. Girling, N. A. Cade, P. V. Kolinsky, R. J. Jones, I. R. Peterson,
M. M. Ahmad, D. B. Neal, M. C. Petty, G. G. Roberts and W. J. Feast,
J. Opt. Soc. Am. B, 1987, 4, 950.
Scheme 1 Reagents and conditions: i, N-methyl-4-picolinium iodide (0.9
equiv.), cat. piperidine, EtOH, reflux, 16 h; ii, N-methyllepidinium iodide
(0.9 equiv.), cat. piperidine, EtOH, reflux, 16 h; iii, (1,3-dioxolan-
2-ylmethyl)tributylphosphonium bromide (1.1 equiv.), NaH (1.5 equiv.),
cat. 18-C-6, THF, room temp., 20 h; iv, HCl (10%), THF, room temp., 1 h;
v, diphenyl(4-pyridyl)methylphosphine oxide (1.1 equiv.), THF, NaH (1.5
equiv.), cat. 18-C-6, room temp. 15 h; vi, MeI, room temp., 1 h.
Table 1 Linear and nonlinear optical properties of amphiphilic push–pull
chromophores 2[1–5] and 3[1] in chloroform; mb values were derived from
EFISH measurements at 1.907 mm
6 A. Hassner, D. Birnbaum and L. M. Loewe, J. Org. Chem., 1984, 49,
2546.
7 M. Barzoukas, M. Blanchard-Desce, D. Josse, J.-M. Lehn and J. Zyss,
Chem. Phys., 1989, 133, 323.
Compound
mb(2w)a/10248 esu lmax/nm mb(0)/10248 esu
8 S. R. Marder, L.-T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-
Desce, J.W. Perry and J. Skindhøj, Science, 1994, 263, 511.
9 M. Blanchard-Desce, V. Alain, P. V. Bedworth, S. R. Marder, A. Fort,
C. Runser, M. Barzoukas, S. Lebus and R. Wortmann, Chem. Eur. J.,
1997, 3, 1091.
2[1]
2[2]
2[3]
2[4]
2[5]
3[1]
840
2230
2700
3380
3690
1380
517
558
581
589
598
603
550
1340
1540
1890
2020
745
10 M. Blanchard-Desce, T. S. Arrhenius and J.-M. Lehn, Bull. Soc. Chim.
Fr., 1993, 130, 266.
11 J.-L. Oudar, J. Chem. Phys., 1977, 67, 446.
12 L. Moreaux, O. Sandre, M. Blanchard-Desce and J. Mertz, Opt. Lett.,
2000, 25, 3220.
a The b values are defined using the X convention (ref. 15).
13 O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell and L. Loew, Biophy.
J., 1993, 65, 672.
14 K. Clays, G. Olbrechts, T. Munters, A. Persoons, O.-K. Kim and L.-S.
Choi, Chem. Phys. Lett., 1998, 293, 337.
15 A. Willets, J. E. Rice, D. M. Burland and D. P. Shelton, J. Chem. Phys.,
1992, 97, 7590.
value as high as 2000 3 10248 esu for the 2[5] ion pair, which
is more than four times larger than the corresponding experi-
mental value (450 3 10248 esu) determined in similar
conditions for the benchmark dipolar chromophore Disperse
Red 1. Compound 3[1], which bears the stronger heterocyclic
acceptor, shows a mb(0) value about 50% larger than that of
compound 2[1], but at the expense of a much reduced
Communication a908717f
354
Chem. Commun., 2000, 353–354