J. Am. Chem. Soc. 1997, 119, 9307-9308
9307
Although found rarely in either stoichiometric or catalytic
reactions,8 this process has recently received growing attention
especially in the field of polymer chemistry.9 In terms of
organic synthesis, however, both elementary steps of C-C bond
cleavage have received much less attention than those of C-C
bond formation, despite their great synthetic potential.
The oxidative addition of a C-C bond onto a transition metal
results in the formation of a σ alkyl-metal complex. Hence,
the two elementary steps of C-C bond cleavage, i.e., oxidative
addition and â-carbon elimination, possibly operate in sequence,
making an interesting synthetic reaction (eq 2). A leading
Rhodium(I)-Catalyzed Successive Double Cleavage
of Carbon-Carbon Bonds of Strained Spiro
Cyclobutanones
Masahiro Murakami,* Kunio Takahashi, Hideki Amii, and
Yoshihiko Ito*
Department of Synthetic Chemistry and Biological Chemistry
Kyoto UniVersity, Yoshida, Kyoto 606-01, Japan
ReceiVed June 13, 1997
Transition metals have been successfully exploited in organic
synthesis, in particular, for the formation of C-C bonds.1 One
of the most important elementary steps constituting C-C bond
formation is the reductive elimination of a di(organyl)metal
complex, which leads to the extrusion of the coupled product
from the metal (eq 1). On the contrary, the reverse process,
example of this sort has been identified by Liebeskind et al.10
We have recently found that the R C-C bond of a cyclobu-
tanone is catalytically cleaved by a rhodium(I) complex, wherein
the carbonyl group directs insertion of the metal.7 As a
continuation of our approach to the problem of C-C bond
activation from the viewpoint of synthetic chemistry, we report
herein a new example of organic transformations in which two
C-C bonds are successively cleaved by a transition metal in a
way shown in eq 2.
A preliminary experiment was carried out by using spiro
cyclobutanone equipped with another four-membered ring (1),11
which was expected to favor â-carbon elimination by relief of
the ring strain.8b,f,g,9d Heating a xylene solution of 1 at reflux
in the presence of [Rh(cod)(dppe)]BF4 (5 mol %)12 for 18 h
gave rise to 2-cyclohexenone (5) in 28% isolated yield along
with decarbonylated products. The formation of 5 can be
explained by assuming the pathway pictured in eq 3. Initially,
rhodium(I) undergoes an insertion into the bond between the
carbonyl carbon and the R-carbon of 1. The resultant five-
membered cyclic acylrhodium (2) undergoes â-carbon elimina-
tion to open the appended cyclobutane ring, forming seven-
membered cyclic acylrhodium (3). Subsequent reductive
elimination gives rise to the methylenecyclohexanone (4), which
finally isomerizes to the conjugated cyclohexenone (5). In the
net transformation of 1 to 5, rhodium(I) successively cleaved
oxidative addition of a C-C bond onto a transition metal,
provides a direct approach to C-C bond cleavage. Although
stoichiometric reactions involving this elementary step have been
the subject of a number of investigations,2-5 catalytic reactions
are still few in number6,7 due to the inertness of C-C σ-bonds
toward transition metals. An alternative method of breaking
C-C bonds is accessible by using σ alkyl-metal complexes.
The bond between the â- and γ-carbon atoms can be cleaved
via â-carbon elimination, the reverse of olefin insertion.
(1) (a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G.
Principles and Applications of Organotransition Metal Chemistry; Univer-
sity Science Books: Mill Valley, CA, 1989. (b) McQuillin, F. J.; Parker,
D. G.; Stephenson, G. R. Transition Metal Organometallics for Organic
Synthesis; Cambridge University Press: Cambridge, 1991.
(2) (a) Schott, A.; Schott, H.; Wilke, G.; Brandt, J.; Hoberg, H.;
Hoffmann, E. G. Liebigs Ann. Chem. 1973, 508. (b) Crabtree, R. H.; Dion,
R. P.; Gibboni, D. J.; McGrath, D. V.; Holt, E. M. J. Am. Chem. Soc. 1986,
108, 7222. (c) Hartwig, J. F.; Anderson, R. A.; Bergman, R. G. J. Am.
Chem. Soc. 1989, 111, 2717. (d) Bennett, M. A.; Nicholls, J. C.; Rahman,
A. K. F.; Redhouse, A. D.; Spencer, J. L.; Willis, A. C. J. Chem. Soc.,
Chem. Commun. 1989, 1328. (e) Suzuki, H.; Takaya, Y.; Takemori, T. J.
Am. Chem. Soc. 1994, 116, 10779. (f) Jun, C.-H.; Kang, J.-B.; Lim, Y.-G.
Tetrahedron Lett. 1995, 36, 277.
(3) (a) Suggs, J. W.; Cox, S. D. J. Organomet. Chem. 1981, 221, 199.
(b) Suggs, J. W.; Jun, C.-H. J. Am. Chem. Soc. 1984, 106, 3054. (c) Suggs,
J. W.; Jun, C.-H. J. Am. Chem. Soc. 1986, 108, 4679. (d) Gozin, M.;
Weisman, A.; Ben-David, Y.; Milstein, D. Nature 1993, 364, 699. (e) Liou,
S.-Y.; Gozin, M.; Milstein, D. J. Am. Chem. Soc. 1995, 117, 9774. (f)
Rybtchinski, B.; Vigalok, A.; Ben-David, Y.; Milstein, D. J. Am. Chem.
Soc. 1996, 118, 12406.
(4) (a) Bishop, K. C. Chem. ReV. 1976, 76, 461. (b) Tipper, C. F. H. J.
Chem. Soc. 1955, 2045. (c) Cassar, L.; Eaton, P. E.; Halpern, J. J. Am.
Chem. Soc. 1970, 92, 6366. (d) Periana, R. A.; Bergman, R. G. J. Am.
Chem. Soc. 1986, 108, 7346. (e) Hughes, R. P.; King, M. E.; Robinson, D.
J.; Spotts, J. M. J. Am. Chem. Soc. 1989, 111, 8919. (f) Hughes, R. P.;
Robinson, D. J. Organometallics 1989, 8, 1015.
(5) (a) Mu¨ller, E.; Segnitz, A. Liebigs Ann. Chem. 1973, 1583. (b)
Kolomnikov, I. S.; Svoboda, P.; Vol’pin, M. E. IzV. Akad. Nauk. Ser. SSSR
1972, 2818; Chem. Abstr. 1973, 78, 97789k. (c) Evans, J. A.; Everitt, G.
F.; Kemmitt, R. D. W.; Russell, D. R. J. Chem. Soc., Chem. Commun. 1973,
158. (d) Liebeskind, L. S.; Baysdon, S. L.; South, M. S.; Iyer, S.; Leeds, J.
P. Tetrahedron 1985, 41, 5839.
(6) (a) Noyori, R.; Odagi, T.; Takaya, H. J. Am. Chem. Soc. 1970, 92,
5780. (b) Kaneda, K.; Azuma, H.; Wayaku, M.; Teranishi, S. Chem. Lett.
1974, 215. (c) Suggs, J. W.; Jun, C.-H. J. Chem. Soc., Chem. Commun.
1985, 92. (d) Perthuisot, C.; Jones, W. D. J. Am. Chem. Soc. 1994, 116,
3647.
(8) (a) Watson, P. L.; Roe, D. C. J. Am. Chem. Soc. 1982, 104, 6471.
(b) Flood, T. C.; Statler, J. A. Organometallics 1984, 3, 1795. (c) Takahashi,
T.; Kageyama, M.; Denisov, V.; Hara, R.; Negishi, E. Tetrahedron Lett.
1993, 34, 687. (d) Hajela, S.; Bercaw, J. E. Organometallics 1994, 13, 1147.
(e) McNeill, K.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1995,
117, 3625. (f) Casey, C. P.; Hallenbeck, S. L.; Pollock, D. W.; Landis, C.
R. J. Am. Chem. Soc. 1995, 117, 9770. (g) Jun, C.-H. Organometallics
1996, 15, 895.
(9) (a) Eshuis, J. J. W.; Tan, Y. Y.; Teuben, J. H. J. Mol. Catal. 1990,
26, 277. (b) Resconi, L.; Piemontesi, F.; Franciscono, G.; Abis, L.; Fiorani,
T. J. Am. Chem. Soc. 1992, 114, 1025. (c) Kesti, M. R.; Waymouth, R. M.
J. Am. Chem. Soc. 1992, 114, 3565. (d) Yang, X.; Jia, L.; Marks, T. J. J.
Am. Chem. Soc. 1993, 115, 3392. (e) Jia, L.; Yang, X.; Yang, S.; Marks,
T. J. J. Am. Chem. Soc. 1996, 118, 1547
(10) Huffman, M. A.; Liebeskind, L. S. J. Am. Chem. Soc. 1993, 115,
4895. The authors reported a rhodium-catalyzed useful ring fusion reaction
of cyclobutenone derivatives, which are more labile thermally13 as well as
catalytically14 than cyclobutanone. Although the exact mechanism was not
mentioned, the reaction seemed to involve a sequence similar to that of the
present work.
(11) Spiro cyclobutanone (1) was readily prepared by [2 + 2] cycload-
dition of methylenecyclobutane with dichloroketene and the subsequent
dechlorination with zinc.
(12) The complex (cod ) cycloocta-1,5-diene, dppe ) Ph2PCH2CH2-
PPh2) was prepared in situ according to a literature procedure: Green, A.;
Kuc, T. A.; Taylor, S. H. J. Chem. Soc. A 1971, 2334.
(13) (a) Danheiser, R. L.; Gee, S. K. J. Org. Chem. 1984, 49, 1672. (b)
Danheiser, R. L.; Nishida, A.; Savariar, S.; Trova, M. P. Tetrahedron Lett.
1988, 39, 4917 and references cited therein.
(7) (a) Murakami, M.; Amii, H.; Ito, Y. Nature 1994, 370, 540. (b)
Murakami, M.; Amii, H.; Shigeto, K.; Ito, Y. J. Am. Chem. Soc. 1996,
118, 8285.
(14) (a) Huffman, M. A.; Liebeskind, L. S. J. Am. Chem. Soc. 1991,
113, 2771. (b) Huffman, M. A.; Liebeskind, L. S. Organometallics 1992,
11, 255.
S0002-7863(97)01949-5 CCC: $14.00 © 1997 American Chemical Society