The conversion of naphthalene can be expressed by Equation (2)
[18] S. Tian, X. Li, A. Wang, R. Prins, Y. Chen, Y. Hu, Angew. Chem., Int.
Ed. 2016, 55, 4030.
Nf − Np
Np
[19] C. A. Badari, F. Lónyi, E. Drotár, A. Kaszonyi, J. Valyon, Appl. Catal.,
B 2015, 164, 48.
Naphthalene(%) =
(2)
[20] P. S. Krishnan, R. Ramya, S. Umasankar, K. Shanthi,
Microporous Mesoporous Mater. 2017, 242, 208.
[21] Y. Yang, C. Ochoa-Hernández, V. C. A. de la Peña O’Shea,
J. M. Coronado, D. P. Serrano, ACS Catal. 2012, 2, 592.
[22] W. Zhen, X. Ning, B. Yang, Y. Wu, Z. Li, G. Lu, Appl. Catal., B 2018,
221, 243.
[23] V. O. Gonçalves, P. M. de Souza, V. T. da Silva, F. B. Noronha,
F. Richard, Appl. Catal., B 2017, 205, 357.
[24] A. Bernardos, E. Piacenza, F. Sancenón, M. Hamidi, A. Maleki,
R. J. Turner, R. Martínez-Máñez, Small 2019, 15, 1900669.
[25] J. L. Vivero-Escoto, I. I. Slowing, B. G. Trewyn, V. S. Y. Lin, Small
2010, 6, 1952.
[26] D. Desai, D. S. Karaman, N. Prabhakar, S. Tadayon, A. Duchanoy,
D. M. Toivola, S. Rajput, T. Näreoja, J. M. Rosenholm, Open Mater.
Sci. 2014, 1, 16.
[27] P. Qiu, B. Ma, C.-T. Hung, W. Li, D. Zhao, Acc. Chem. Res. 2019, 52,
2928.
where Nf is the mass fraction of naphthalene in the feedstock and Np is
the mass fraction of naphthalene in the products.
Supporting Information
Supporting Information is available from the Wiley Online Library or
from the author.
Acknowledgements
This research was financially supported by the National Natural Science
Foundation of China (Nos. 21878330, 21676298, U1463207, and 21503152).
[28] Y. Wan, D. Zhao, Chem. Rev. 2007, 107, 2821.
[29] X. Du, B. Shi, J. Liang, J. Bi, S. Dai, S. Z. Qiao, Adv. Mater. 2013, 25,
5981.
[30] V. Polshettiwar, D. Cha, X. Zhang, J. M. Basset, Angew. Chem., Int.
Ed. 2010, 49, 9652.
Conflict of Interest
The authors declare no conflict of interest.
[31] B. Y. Guan, S. L. Zhang, X. W. Lou, Angew. Chem., Int. Ed. 2018, 57,
6176.
Keywords
[32] L. Peng, C.-T. Hung, S. Wang, X. Zhang, X. Zhu, Z. Zhao, C. Wang,
Y. Tang, W. Li, D. Zhao, J. Mater. Chem. 2019, 141, 7073.
[33] K. Zhang, L.-L. Xu, J.-G. Jiang, N. Calin, K.-F. Lam, S.-J. Zhang,
H.-H. Wu, G.-D. Wu, B. l. Albela, L. Bonneviot, J. Mater. Chem.
2013, 135, 2427.
[34] X. Du, X. Li, H. Huang, J. He, X. Zhang, Nanoscale 2015, 7, 6173.
[35] D. Shen, J. Yang, X. Li, L. Zhou, R. Zhang, W. Li, L. Chen, R. Wang,
F. Zhang, D. Zhao, Nano Lett. 2014, 14, 923.
beta, hydrogenating reaction, mesoporous silica nanospheres
Received: April 1, 2020
Revised: May 3, 2020
Published online:
[36] Y. Chen, H. Chen, J. Shi, Adv. Mater. 2013, 25, 3144.
[37] S. Cui, G. Wang, Y. Yang, B. Liu, Fuel 2018, 225, 10.
[38] X. Wang, J. Mei, Z. Zhao, P. Zheng, Z. Chen, D. Gao, J. Fu, J. Fan,
A. Duan, C. J. A. C. Xu, ACS Catal. 2018, 8, 1891.
[39] D. Zhang, A. Duan, Z. Zhao, C. Xu, J. Catal. 2010, 274, 273.
[40] D. Gao, A. Duan, X. Zhang, K. Chi, Z. Zhao, J. Li, Y. Qin, X. Wang,
C. Xu, J. Mater Chem. A 2015, 3, 16501.
[41] R. L. Wadlinger, G. T. Kerr, E. J. Rosinski, U.S. Patent 3,308,069[P],
1967.
[42] M. Treacy, J. Newsam, Nature 1988, 332, 249.
[43] J. Higgins, R. B. LaPierre, J. Schlenker, A. Rohrman, J. Wood,
G. Kerr, W. Rohrbaugh, Am. Chem. Soc., Div. Pet. Chem., Prepr. 1988,
33, 880939.
[1] Z. Wang, S. Pokhrel’, M. Chen, M. Hunger, L. Mädler, J. Huang,
J. Catal. 2013, 302, 10.
[2] P. Gong, B. Li, X. Kong, J. Liu, S. Zuo, Appl. Surf. Sci. 2017, 423, 433.
[3] C. Yan, H. Fan, S. Wu, W. Qian, G. Jin, G. Liang, B. Zong, B. Han,
Green Chem. 2009, 11, 1061.
[4] J. Bai, X. Li, A. Wang, R. Prins, Y. Wang, J. Catal. 2012, 287, 161.
[5] X. F. Lu, L. Yu, X. W. D. Lou, Sci. Adv. 2019, 5, eaav6009.
[6] H. Zhang, W. Zhou, J. Dong, X. F. Lu, X. W. D. Lou, Energy Environ.
Sci. 2019, 12, 3348.
[7] A. Infantes-Molina, J. Cecilia, B. Pawelec, J. Fierro,
E. Rodríguez-Castellón, A. Jiménez-López, Appl. Catal., A 2010, 390,
253.
[8] J.-G. Jang, Y.-K. Lee, Appl. Catal., B 2019, 250, 181.
[9] H. Song, M. Dai, H. Song, X. Wan, X. Xu, C. Zhang, H. Wang,
Catal. Commun. 2014, 43, 151.
[10] B. You, N. Jiang, M. Sheng, M. W. Bhushan, Y. Sun, ACS Catal.
2016, 6, 714.
[11] K. Li, R. Wang, J. Chen, Energy Fuels 2011, 25, 854.
[12] G. H. L. Savithra, E. Muthuswamy, R. H. Bowker, A. C. Bo,
M. E. Bussel, S. L. Brock, Chem. Mater. 2013, 25, 825.
[13] H. Wang, X.-K. Gu, X. Zheng, H. Pan, J. Zhu, S. Chen, L. Cao,
W.-X. Li, J. Lu, Sci. Adv. 2019, 5, eaat6413.
[44] Q. Zhang, W. Ming, J. Ma, J. Zhang, P. Wang, R. Li, J. Mater. Chem.
A 2014, 2, 8712.
[45] L. Gao, Z. Shi, U. J. Etim, P. Wu, W. Xing, Y. Zhang, P. Bai, Z. Yan,
Fuel 2019, 252, 653.
[46] M. Wu, Q. Meng, Y. Chen, Y. Du, L. Zhang, Y. Li, L. Zhang, J. Shi,
Adv. Mater. 2015, 27, 215.
[47] H. Song, Q. Yu, N. Jiang, Z. Yan, T. Hao, Z. Wang, Res. Chem.
Intermed. 2018, 44, 3629.
[48] H. Song, J. Wang, Z. Wang, H. Song, F. Li, Z. Jin, J. Catal. 2014, 311,
257.
[14] S. T. Oyama, J. Catal. 2003, 216, 343.
[49] J.
Cecilia,
A.
Infantes-Molina,
E.
Rodríguez-Castellón,
[15] J. A. Rodriguez, J.-Y. Kim, J. C. Hanson, S. J. Sawhill, M. E. Bussell,
J. Phys. Chem. B 2003, 107, 6276.
[16] S. T. Oyama, Y.-K. Lee, J. Catal. 2008, 258, 393.
[17] L. Zhang, W. Fu, Q. Yu, T. Tang, Y. Zhao, H. Zhao, Y. Li, J. Catal.
2016, 338, 210.
A. Jiménez-López, J. Catal. 2009, 263, 4.
[50] D.-S. Moon, J.-K. Lee, Langmuir 2012, 28, 12341.
[51] D.-S. Moon, J.-K. Lee, Langmuir 2014, 30, 15574.
[52] A. I. d’Aquino, S. J. Danforth, T. R. Clinkingbeard, B. Ilic, L. Pullan,
M. A. Reynolds, B. D. Murray, M. E. Bussell, J. Catal. 2016, 335, 204.
©
2002091 (9 of 9)
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Small 2020, 2002091