3371; (f) K. C. Nicolaou, S. P. Ellery and J. S. Chen, Angew. Chem., Int.
Ed., 2009, 48, 7140; (g) M. Szostak and D. J. Procter, Angew. Chem., Int.
Ed., 2011, 50, 7737; (h) A. Dahlén and G. Hilmersson, Eur. J. Inorg.
Chem., 2004, 3393; (i) R. A. Flowers, II, Synlett, 2008, 1427;
( j) C. Beemelmanns and H. U. Reissig, Chem. Soc. Rev., 2011, 40, 2199;
(k) H. Y. Harb and D. J. Procter, Synlett, 2012, 23, 6.
3 For selected examples, see: (a) T. K. Hutton, K. Muir and D. J. Procter,
Org. Lett., 2002, 4, 2345; (b) T. K. Hutton, K. Muir and D. J. Procter,
Org. Lett., 2003, 5, 4811; (c) C. E. McDonald, J. D. Ramsey,
D. G. Sampsell, J. A. Butler and M. R. Cecchini, Org. Lett., 2010, 12,
5178; (d) P. R. Chopade, E. Prasad and R. A. Flowers, II, J. Am. Chem.
Soc., 2004, 126, 44; (e) E. Prasad and R. A. Flowers, II, J. Am. Chem.
Soc., 2005, 127, 18093; (f) J. A. Teprovich Jr., M. N. Balili, T. Pintauer
and R. A. Flowers, II, Angew. Chem., Int. Ed., 2007, 46, 8160;
(g) D. V. Sadasivam, P. K. S. Antharjanam, E. Prasad and R. A. Flowers,
II, J. Am. Chem. Soc., 2008, 130, 7228; (h) K. A. Choquette,
D. V. Sadasivam and R. A. Flowers, II, J. Am. Chem. Soc., 2010, 132,
17396; (i) D. V. Sadasivam, J. A. Teprovich Jr., D. J. Procter and
R. A. Flowers, II, Org. Lett., 2010, 12, 4140; ( j) A. Tarnopolsky and
S. Hoz, J. Am. Chem. Soc., 2007, 129, 3402; (k) M. Amiel-Levy and
S. Hoz, J. Am. Chem. Soc., 2009, 131, 8280; (l) S. K. Upadhyay and
S. Hoz, J. Org. Chem., 2011, 76, 1355; (m) C. M. Jensen, K. B. Lindsay,
R. H. Taaning, J. Karaffa, A. M. Hansen and T. Skrydstrup, J. Am. Chem.
Soc., 2005, 127, 6544; For a recent breakthrough in the elucidation of the
role of NiI2 in SmI2 chemistry, see: (n) K. A. Choquette, D. V. Sadasivam
and R. A. Flowers, II, J. Am. Chem. Soc., 2011, 133, 10655.
Scheme 5 Mechanism of lactone reduction using SmI2–H2O–Et3N.
Preliminary observations on the mechanism and features of
lactone reduction, are listed below (see, ESI‡ for details11): (a) A
primary kinetic isotope effect kH/kD of 1.2 was determined for
six-membered lactone 1a indicating that proton transfer is not
involved in the rate limiting step. (b) As illustrated in Scheme 4,
the reduction of 1a with SmI2–D2O gave 2a-D2, suggesting that
anions are generated and protonated by H2O during a series of
single electron transfers. (c) Complete selectivity for lactone 1a
is observed in competition experiments with primary aliphatic
esters suggesting that initial electron transfer is rate-limiting. (d)
The reaction of six-membered lactone 1a is instantaneous (reac-
tion complete in <30 s). (e) The relative rates of the reduction of
5-, 6-, 7-membered lactones are: 6 > 7 > 5. (f) Both additives
(H2O and amine) are required for the reaction, with no reactivity
observed in the absence of water and insignificant conversions
detected in the absence of amine. (g) The optimal ratio of SmI2–
H2O–amine required to form the active complex is 1 : 1 : 2. This
is consistent with literature precedent.10 (h) Amines other than
Et3N can be used in the reaction to deliver the products in com-
parable yields. (i) In agreement with our previous observations,
water is the proton source of choice when compared to the use of
other protic co-solvents known to strongly coordinate to SmI2.
In summary, we have introduced an approach for the selective
reduction of lactones of all sizes and topologies using SmI2–
H2O as a single electron reductant. The value of this transform-
ation has been highlighted by the selective manipulation of
complex and/or sensitive molecules and by the orchestration of
one-pot sequential reactions. We expect that this method will be
of broad utility for the selective reduction of lactones under mild
conditions. Application of the radical-anion intermediates
formed in the reduction in reductive C–C bond formation will be
described shortly.
4 L. A. Duffy, H. Matsubara and D. J. Procter, J. Am. Chem. Soc., 2008,
130, 1136.
5 (a) M. Szostak, M. Spain and D. J. Procter, Chem. Commun., 2011, 47,
10254; (b) M. Szostak, M. Spain and D. J. Procter, Org. Lett., 2012, 14,
840.
6 For a review of selective reductions using SmI2–H2O, see: M. Szostak,
M. Spain, D. Parmar and D. J. Procter, Chem. Commun., 2012, 48, 330.
7 D. Parmar, L. A. Duffy, D. V. Sadasivam, H. Matsubara, P. A. Bradley,
R. A. Flowers, II and D. J. Procter, J. Am. Chem. Soc., 2009, 131, 15467.
8 D. Parmar, K. Price, M. Spain, H. Matsubara, P. A. Bradley and
D. J. Procter, J. Am. Chem. Soc., 2011, 133, 2418.
9 For reduction and reductive cyclisations of cyclic 1,3-diesters with SmI2–
H2O, see: (a) G. Guazzelli, S. De Grazia, K. D. Collins, H. Matsubara,
M. Spain and D. J. Procter, J. Am. Chem. Soc., 2009, 131, 7214;
(b) K. D. Collins, J. M. Oliveira, G. Guazzelli, B. Sautier, S. De Grazia,
H. Matsubara, M. Helliwell and D. J. Procter, Chem.–Eur. J., 2010, 16,
10240; (c) B. Sautier, S. E. Lyons, M. E. Webb and D. J. Procter, Org.
Lett., 2012, 14, 146.
10 For seminal work on the addition of amines to SmI2–H2O, see:
(a) W. Cabri, I. Candiani, M. Colombo, L. Franzoi and A. Bedeschi, Tet-
rahedron Lett., 1995, 36, 949; (b) A. Dahlén and G. Hilmersson, Tetrahe-
dron Lett., 2002, 43, 7197; For selected examples, see: (c) A. Dahlén and
G. Hilmersson, Chem.–Eur. J., 2003, 9, 1123; (d) A. Dahlén,
A. Sundgren, M. Lahmann, S. Oscarson and G. Hilmersson, Org. Lett.,
2003, 5, 4085; (e) A. Dahlén, G. Hilmersson, B. W. Knettle and
R. A. Flowers, II, J. Org. Chem., 2003, 68, 4870; (f) A. Dahlén and
G. Hilmersson, J. Am. Chem. Soc., 2005, 127, 8340; (g) T. A. Davis,
P. Chopade, G. Hilmersson and R. A. Flowers, II, Org. Lett., 2005, 7,
119; (h) A. Dahlén, Å. Nilsson and G. Hilmersson, J. Org. Chem., 2006,
71, 1576; (i) T. T. Ankner and G. Hilmersson, Tetrahedron, 2009, 65,
10856; ( j) J. Wettergren, T. Ankner and G. Hilmersson, Chem. Commun.,
2010, 46, 7596; (k) T. Ankner and G. Hilmersson, Org. Lett., 2009, 11,
503.
11 The ESI‡ contains: (a) Table ESI-1,‡ comparing lactone reduction
with SmI2–H2O and SmI2–H2O–Et3N systems (b) detailed information
regarding mechanistic studies on lactone reduction using SmI2–H2O–
Et3N.
Acknowledgements
We thank the EPRSC, AstraZeneca and GSK for support.
12 (a) M. Hudlicky, Reductions in Organic Chemistry, Ellis Horwood,
Chichester, 1984; (b) J. Seyden-Penne, Reductions by Alumino and
Borohydrides in Organic Synthesis, Wiley, New York, 1997;
(c) P. G. Andersson and I. J. Munslow, Modern Reduction Methods,
Wiley VCH, Weinheim, 2008; (d) D. Addis, S. Das, K. Junge and
M. Beller, Angew. Chem., Int. Ed., 2011, 50, 6004.
13 D. L. J. Clive and C. Zhang, J. Org. Chem., 1995, 60, 1413.
14 (a) K. C. Nicolaou, D. Vourloumis, N. Winssinger and P. S. Baran,
Angew. Chem., Int. Ed., 2000, 39, 44; (b) E. J. Corey and X. M. Cheng,
The Logic of Chemical Synthesis, Wiley-Blackwell, 1995;
(c) K. C. Nicolaou and E. J. Sorensen, Classics in Total Synthesis:
Targets, Strategies, Methods, Wiley VCH, 1996.
Notes and references
1 D. J. Procter, R. A. Flowers, II and T. Skrydstrup, Organic Synthesis
using Samarium Diiodide: A Practical Guide, RSC Publishing, Cam-
bridge, 2009.
2 For general reviews on SmI2, see: (a) H. B. Kagan, Tetrahedron, 2003,
59, 10351; (b) G. A. Molander and C. R. Harris, Chem. Rev., 1996, 96,
307; (c) A. Krief and A. M. Laval, Chem. Rev., 1999, 99, 745;
(d) P. G. Steel, J. Chem. Soc., Perkin Trans. 1, 2001, 2727;
(e) D. J. Edmonds, D. Johnston and D. J. Procter, Chem. Rev., 2004, 104,
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 5820–5824 | 5823