R.D. Chambers et al. / Journal of Fluorine Chemistry 128 (2007) 29–33
33
Table 4
Acknowledgement
Crystal data for 2c and 3c
Compound
2c
3c
We thank the EPSRC Crystal Faraday Partnership for
funding.
Formula
C6H4FNO3
157.10
Orthorhombic
7.1637(3)
11.1219(4)
7.6021(3)
90
C6H3F2NO3
175.09
M (g/mol)
Crystal system
˚
a (A)
˚
b (A)
˚
c (A)
Triclinic
References
6.8014(9)
9.7327(12)
10.0234(13)
93.181(2)
102.156(2)
97.314(2)
641.03(14)
120(2)
[1] For Part 19, see R.D. Chambers, M. Parsons, G. Sandford, E. Thomas, J.
Trmcic, J.S. Moilliet, Tetrahedron, 62 (2006) 7162–7167.
[2] R.E. Banks, B.E. Smart, J.C. Tatlow, Organofluorine chemistry, in:
P. rinciples and Commercial Applications, Plenum Press, New York, 1994
[3] J.S. Moilliet, in: R.E. Banks, B.E. Smart, J.C. Tatlow (Eds.), Organo-
fluorine Chemistry. Principles and Commercial Applications, Plenum
Press, New York, 1994, pp. 195–219.
a (8)
b (8)
g (8)
90
90
3
˚
V (A )
605.69(4)
120(2)
T (K)
¯
P1
Space group
Pna2(1)
4
[4] V. Grakauskas, J. Org. Chem. 35 (1970) 723–728.
Z
4
[5] R.D. Chambers, C.J. Skinner, J. Hutchinson, J. Thomson, J. Chem. Soc.,
Perkin Trans. I (1996) 605–609.
m (mmꢁ1
Reflns measured
)
0.159
0.182
7825
7055
[6] R.D. Chambers, J. Hutchinson, M.E. Sparrowhawk, G. Sandford, J.S.
Moilliet, J. Thomson, J. Fluorine Chem. 102 (2000) 169–173.
[7] R.D. Chambers, D. Holling, R.C.H. Spink, G. Sandford, Lab on a Chip 1
(2001) 132–137.
Reflns unique [Rint
Goodness-of-fit (on F2)
]
982 [0.0231]
1.272
3106 [0.0423]
1.071
R(F), I > 2s(I)
wRðF2Þ, all data
0.0344
0.0922
0.0627
0.1400
[8] R.D. Chambers, D. Holling, G. Sandford. UK Pat. Appl. 03/01993, 2002.
[9] R.D. Chambers, G. Sandford, Chim. Oggi. 22 (2004) 6–8.
[10] R.D. Chambers, M.A. Fox, D. Holling, T. Nakano, T. Okazoe, G.
Sandford, Lab on a Chip 5 (2005) 191–198.
dd, 4JHH 2.4, 5JHF 1.4, H-4); dc 115.5 (d, 2JCF 26.9, C-6), 116.5
(d, JCF 2.9, C-4), 123.2 (d, JCF 21.8, C-2), 146.0 (s, C-5),
149.0 (s, C-3), 160.0 (d, 1JCF 258.2, C-1); m/z (EI+) 220 ([M]+,
8%), 128 (100), 92 (98).
[11] K. Jahnisch, M. Baerns, V. Hessel, W. Ehrfeld, V. Haverkamp, H. Lowe, C.
Wille, A. Guber, J. Fluorine Chem. 105 (2000) 117–128.
[12] V. Hessel, P. Lob, H. Lowe, Chim. Oggi. 22 (2004) 10–12 (and references
therein).
4
2
[13] P. Lob, H. Lowe, V. Hessel, J. Fluorine Chem. 125 (2004) 1677–1694.
[14] O. Worz, K.P. Jackel, T. Richter, A. Wolf, Chem. Eng. Sci. 56 (2001)
1029–1033.
3.3. X-ray crystallography1
[15] S.J. Haswell, R.J. Middleton, B. O’Sullivan, V. Skelton, P. Watts, P.
Styring, Chem. Commun. (2001) 391–398.
Single crystal structure determinations were carried out
from data collected using graphite monochromated Mo Ka
radiation (l = 0.71073) on Bruker three-circle diffractometers
equipped with an APEX (for 2c) and a SMART-1K (for 3c)
CCD detector. Both data collections were carried out at 120 K
using Oxford Cryosystems Cryostream N2 flow cooling devices
[22]. Series of narrow v-scans (0.38) were performed at several
f-settings in such a way as to cover in each case a sphere of data
[16] W. Ehrfeld, V. Hessel, H. Lowe, Microreactors, New Technology for
Modern Chemistry, Wiley–VCH, New York, 2000.
[17] R.D. Chambers, M.A. Fox, D. Holling, T. Nakano, T. Okazoe, G.
Sandford, Chem. Eng. Technol. 28 (2005) 344–352.
[18] R.D. Chambers, M.A. Fox, G. Sandford, Lab on a Chip 5 (2005) 1132–
1139.
[19] M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A.
Robb, J.R. Cheeseman, T. Keith, G.A. Petersson, J.A. Montgomery, K.
Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Fores-
man, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe,
C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle,
R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker,
J.P. Stewart, M. Head-Gordon, C. Gonzalez, J.A. Pople, Gaussian 94,
Revision E.2, Gaussian, Inc., Pittsburgh, PA, 1995.
˚
to a maximum resolution of 0.71 A. Data collection was
controlled using the SMART software [23], while raw frame
data were integrated using the SAINT program [24]. No
absorption correction was applied to any of the datasets. The
structures were solved using Direct Methods and refined by
full-matrix least squares on F2 using SHELXTL [25]. All non-
hydrogen atoms were refined with anisotropic atomic
displacement parameters (adps). Hydrogen atoms were located
from difference Fourier maps and their fractional coordinates
refined. Isotropic displacement parameters for hydrogen atoms
were restrained to that of their parent C atom, with
[20] F. Effenberger, W. Streicher, Chem. Ber. 124 (1991) 157–161.
[21] T. Kawakami, H. Suzuki, J. Chem. Soc., Perkin Trans. I (2000) 1259–
1264.
[22] J. Cosier, A.M. Glazer, J. Appl. Cryst. 19 (1986) 105–107.
[23] Bruker, SMART V5.63. Data Collection Software, Bruker Analytical X-
ray Instruments Inc., Wisconsin, USA, 2003.
[24] Bruker, SAINT V6.45A. Data Reduction Software, Bruker Analytical X-
ray Instruments Inc., Wisconsin, USA, 2003.
Uiso(H) = 1.2Ueq(C). Crystal data and experimental details
are given in Table 4.
[25] Bruker, SHELXTL, V6.12 Bruker Analytical X-ray Instruments Inc.,
Wisconsin, USA, 2001.
1
Crystallographic data (excluding structure factors) for the structures in this
paper have been deposited with the Cambridge Crystallographic Data Centre as
supplementary publication nos. CCDC 612547 and 612548. Copies of the data