Synthesis and Properties of Cycloheptatrienyl(dipropyl)borane
J. Am. Chem. Soc., Vol. 120, No. 5, 1998 1035
these two forms exist.8 This stimulated extensive studies of
steric and electronic substituent effects on CHT-NCD equi-
libria.9 The first explanation of the observed stability of 7,7-
dicyanonorcaradiene proposed by Ingold,10 Viz. “quasi-conju-
gation of the cyclopropane ring with the cyano-group”, was
supported theoretically by Hoffmann11a and Gu¨nther,11b who
showed that NCD is stabilized by electron donation from the
cyclopropane Walsh orbital into an unoccupied π MO. It was
shown recently that CHT-NCD equilibria can be controlled
differentially through substitution.12 For instance, NCD can be
stabilized by introducing weak π donors in 3,5-positions.13
Nevertheless, it is still impossible to differentiate between the
steric and electronic effects operative in CHT-NCD equilibria.
The study of related new systems allowing these effects to be
analyzed more cleanly is desirable, especially in view of the
fundamental importance of this problem for the synthesis14 and
understanding of similar equilibria in larger molecules, such as
1,6-methano[10]annulenes,15 as well as fullerenes and fulle-
roids.16
The present work describes the synthesis of cycloheptatrienyl-
(dipropyl)borane (2) as well as its analysis by NMR and
electronic structure methods.
Results and Discussion
Synthesis of Cycloheptatrienyl(dipropyl)borane. Synthe-
sis of Trimethylcycloheptatrienyltin (6) and the Kinetics of
the [1,5] Sn Shift. Borylation of appropriate lithium or
potassium precursors for the synthesis of allylic boranes was
accomplished previously.3,17 Unfortunately, this approach failed
for the preparation of the target compound 2 since the corre-
sponding antiaromatic cycloheptatrienyl anion is highly un-
stable.18,19 Therefore, only covalent cycloheptatrienyl metals
could be considered as suitable synthetic precursors for the
desired borane. Among those, the tin compounds are most
readily accessible via reaction of tin-lithium derivatives with
tropylium salts. Thus, triphenylcyclo-heptatrienyltin (3) was
prepared by reacting Ph3SnLi with tropylium tetrafluoroborate
(Scheme 1).1a-c
(4) For reviews, see: (a) Maier, G. Angew. Chem. 1967, 79, 446. (b)
Vogel, E. Pure Appl. Chem. 1969, 20, 237. (c) le Noble, W. J. Highlights
of Organic Chemistry; Dekker: New York, 1974; p 402. (d) Liebman, J.
F. Chem. ReV. 1989, 89, 1225. (e) Okamura, W. H.; Delera, A. R. In
ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, 1991; Vol. 5, p 699.
(5) Willsta¨tter, R. Liebigs Ann. Chem. 1901, 317, 204.
(6) (a) Darms, R.; Threlfall, T.; Pesaro, M.; Eschenmoser, A. HelV. Chim.
Acta 1963, 46, 1893. (b) Vogel, E.; Wiedemann, W.; Kiefer, H.; Harrison,
V. F. Tetrahedron Lett. 1963, 673. (c) Ciganek, E. J. Am. Chem. Soc. 1967,
89, 1454. (d) Mukai, T.; Kubota, H.; Toda, T. Tetrahedron Lett. 1967, 3581.
(e) Scho¨nleber, D. Angew. Chem. 1969, 81, 83. (f) Jones, M., Jr. Ibid. 1969,
81, 87.
Scheme 1
(7) (a) Knox, L. H.; Velarde, E.; Cross, A. D. J. Am. Chem. Soc. 1963,
85, 5, 2533. (b) Knox, L. H.; Velarde, E.; Cross, A. D. ibid. 1965, 87,
3727. (c) Lambert, J. B.; Durham, L. J.; Lepoutere, P.; Roberts, J. D. Ibid.
1965, 87, 3896. (d) Vogel, E.; Maier, W.; Eimer, J. Tetrahedron Lett. 1966,
655. (e) Gale, D. M.; Middleton, W. J.; Krespan, C. G. J. Am. Chem. Soc.
1966, 88, 3617. (f) Bushweller, C. H.; Sharpe, M.; Weininger, S. J.
Tetrahedron Lett. 1970, 453.
Although the yields are low and many byproducts form,
stannane 3 is stable and can be purified by column chromatog-
raphy. However, the triphenyl derivative 3 is an unsuitable
starting compound for the synthesis of the boron analogue via
transmetalation, since phenyl radicals in organotin compounds
are more labile than alkyl groups,20 and the expected product
of a reaction between 3 and a dialkylboron halide is a
dialkylphenylboron species. Therefore, a trialkyltin derivative
of cycloheptatriene was needed; unsuccessful syntheses of
trimethyl- or triethylcycloheptatrienyltin are described in the
literature.1c In these experiments bicycloheptatrienyl (4) and
ditin compound 5 were the only products of the reaction of
R3SnLi (R ) Me,Et) with tropylium tetrafluoroborate (Scheme
2). Thus, we decided to try the less ionic tropylium bromide
for the synthesis of trimethylcycloheptatrienyltin (6).
(8) (a) Ciganek, E. J. Am. Chem. Soc. 1965, 87, 1149. (b) Go¨rlitz, M.;
Gu¨nter, H. Tetrahedron 1969, 4467. (c) Hall, G. E.; Roberts, J. D. J. Am.
Chem. Soc. 1971, 93, 2203. (d) Ciganek, E. Ibid. 1971, 93, 2207.
(9) (a) Daub, J.; Betz, W. Tetrahedron Lett. 1972, 3451. (b) Gu¨nther,
H.; Peters, W.; Wehner, R. Chem. Ber. 1973, 106, 3683. (c) Kla¨rner, F.-
G.; Tetrahedron Lett. 1974, 19. (d) Stohrer, W.-D.; Daub, J. Angew. Chem.
1974, 86, 54. (e) Wehner, R.; Gu¨nther, H. J. Am. Chem. Soc. 1975, 97,
923. (f) Staley, S. W.; Fox, M. A.; Cairncross, A. Ibid, 1977, 99, 4524. (g)
Balci, M.; Fischer, H.; Gu¨nther, H. Angew. Chem. 1980, 92, 316. (h)
Takeuchi, K.; Arima, M.; Okamoto, K. Tetrahedron Lett. 1981, 22, 3081.
(i) Takeuchi, K.; Fujimoto, H.; Okamoto, K. Ibid. 1981, 22, 4981. (j)
Takeuchi, K.; Kitagawa, T.; Toyama, T.; Okamoto, K. J. Chem. Soc., Chem.
Commun. 1982, 313. (k) Takeuchi, K.; Kitagawa, T.; Senzaki, Y.; Fulimoto,
H.; Okamoto, K. Chem. Lett. 1983, 69. (l) Takeuchi, K.; Kitagawa, T.;
Senzaki, Y.; Okamoto, K. Ibid. 1983, 73. (m) Takeuchi, K.; Senzaki, Y.;
Okamoto, K. J. Chem. Soc., Chem. Commun. 1984, 111. (n) Takeuchi, K.;
Fujimoto, H.; Kitagawa, T.; Fujii, H.; Okamoto, K. J. Chem. Soc., Perkin
Trans. 2 1984, 461. (o) Takeuchi, K.; Kitagawa, T.; Ueda, A.; Senzaki, Y.;
Okamo, K. Tetrahedron 1985, 41, 5455.
(10) Ingold, C. K. Structure and Mechanism in Organic Chemistry;
Cornell University Press: Ithaca, NY, 1969; p 882.
(11) (a) Hoffmann, R. Tetrahedron Lett. 1970, 2907. (b) Gu¨nther, H.
Ibid. 1970, 5173.
(12) (a) Saba, A. Tetrahedron Lett. 1990, 32, 4657. (b) Kohmoto, S.;
Funabashi, T.; Nakayama, N.; Nishio, T.; Iida, I.; Kishikawa, K.; Yamamoto,
M.; Yamada, K. J. Org. Chem. 1993, 58, 4764. (c) Oda, M.; Horiguchi,
H.; Nasaki, Y.; Sakamoto, Y.; Kuroda, S. Recl. TraV. Chim. Pays-Bas 1996,
115, 149.
(13) (a) Matsumoto, M.; Shiono, T.; Mutoh, H.; Amano, M.; Arimitsu,
S. J. Chem. Soc., Chem. Commun. 1995, 101. (b) Matsumoto, M.; Shiono,
T.; Kasuga, N. C. Tetrahedron Lett. 1995, 36, 8817.
(15) (a) Roth, W. R.; Kla¨rner, F. G.; Siepert, G.; Lennartz, H.-W. Chem.
Ber. 1992, 125, 217. (b) Dorn, H. C.; Yannoni, C. S.; Limbach, H.-H.;
Vogel, E. J. Phys. Chem. 1994, 98, 11628. (c) Laue, J.; Seitz, G. Liebigs
Ann. Chem. 1996, 773. (d) Mealli, C.; Ienco, A.; Hoyt, E. B.; Zoellner, R.
W. Chem. Eur. J. 1997, 3, 958.
(16) (a) Warner, P. M. J. Am. Chem. Soc. 1994, 116, 11059. (b) Li, Z.;
Shevlin, P. B. Ibid. 1997, 119, 1149.
(17) (a) Gurskii, M. E.; Gridnev, I. D.; Geiderikh, A. V.; Ignatenko, A.
V.; Bubnov, Y. N.; Mstislavky, V. I.; Ustynyuk, Y. A. Organometallics
1992, 11, 4056. (b) Gurskii, M. E.; Gridnev, I. D.; Il’ichev, Y. V.; Ignatenko,
A. V.; Bubnov, Y. N. Angew. Chem. 1992, 104, 762. (c) Gridnev, I. D.;
Gurskii, M. E.; Ignatenko, A. V.; Bubnov, Y. N.; Il’ichev, Y. V.
Organometallics 1993, 12, 2487. (d) Gurskii, M. E.; Gridnev, I. D.; Buevich,
A. V.; Bubnov, Y. N. Organometallics 1994, 13, 4658. (e) Gridnev, I. D.;
Gurskii, M. E.; Buevich, A. V.; Bubnov, Y. N. Russ. Chem. Bull. 1996,
107. (f) Gridnev, I. D.; Gurskii, M. E.; Bubnov, Y. N. Organometallics
1996, 15, 3696.
(18) Kuwajima, S.; Soos, Z. G. J. Am. Chem. Soc. 1987, 109, 107.
(19) (a) Staley, S. W.; Orvedal, A. W. J. Am. Chem. Soc. 1974, 96, 1618.
(b) Cunion, R. F.; Karney, W.; Wenthold, P. G.; Borden, W. T.; Lineberger,
W. C. Ibid. 1996, 118, 5074.
(14) (a) Banwell, M. G.; Onrust, R. Tetrahedron Lett. 1985, 26, 4543.
(b) Jeener, G.; Papadopoulos, M. J. Org. Chem. 1986, 51, 1, 585. (c)
Kohmoto, S.; Nakayama, N.; Takami, J.-i.; Kishikawa, K.; Yamamoto, M.;
Yamada, K. Tetrahedron Lett. 1996, 37, 7761. (d) Oda, M.; Horiguchi, H.;
Kajioka, T.; Kuroda, S. Recl. TraV. Chim. Pays-Bas 1996, 115, 151. (e)
Kitagawa, T.; Miyabo, A.; Fujii, H.; Okazaki, T.; Mori, T.; Matsudou, M.;
Sugie, T.; Takeuchi, K. J. Org. Chem. 1997, 62, 888.
(20) (a) Moedritzer, K. Organomet. Chem. ReV. 1966, 1, 179. (b) Hann,
N. S.; Mole, T. Prog. NMR 1969, 4, 91.