Communication
ChemComm
7 For reviews on C–H bond functionalization in combination with
photoredox catalysis, see: (a) D. C. Fabry and M. Rueping, Acc. Chem.
Res., 2016, 49, 1969; (b) Y. Qin, L. Zhu and S. Luo, Chem. Rev., 2017,
117, 9433.
under these conditions. While we are currently unable to
differentiate the individual cycles, the observed selectivity of
the overall transformation proves the superior performance
(synthetic potential) of dual iodine/photoredox catalysis. As a
mechanistic consequence, all oxidation is exclusively promoted
by the dye within multiple events. These include initial oxidation of
the organic substrate and the regeneration of the molecular iodine.
In addition, a competing, albeit kinetically less competent pathway
based on photoredox catalysis alone may be involved.
We have discovered a new oxidative process for the lactoni-
zation of benzylic C–H bonds. The reaction combines catalytic
amounts of molecular iodine and a dye and relies on photo-
redox catalysis as the terminal oxidation. The present protocol
broadens molecular iodine catalysis and should be instructive
for the development of related C–H oxidation reactions.
8 (a) Y. Miyake, K. Nakajima and Y. Nishibayashi, Chem. Commun., 2013,
49, 7854; (b) C. P. Johnston, R. T. Smith, S. Allmendinger and
D. W. C. MacMillan, Nature, 2016, 536, 322; (c) W.-M. Cheng, R. Shang,
M.-C. Fu and Y. Fu, Chem. – Eur. J., 2017, 23, 2537; (d) K. Xu, Z. Tan,
H. Zhang, L. Liu, S. Zhang and Z. Wang, Chem. Commun., 2017, 53, 10719;
(e) L. Candish, M. Freitag, T. Gensch and F. Glorius, Chem. Sci., 2017,
8, 3618; ( f ) H. Zhang, P. Zhang, M. Jiang, H. Yang and H. Fu, Org. Lett.,
2017, 19, 1016; (g) H. Huang, K. Jia and Y. Chen, ACS Catal., 2016, 6, 4983;
(h) G. H. Lovett and B. A. Sparling, Org. Lett., 2016, 18, 3494.
9 For non-photoredox based decarboxylative functionalization: (a) Z. Wang,
L. Zhu, F. Yin, Z. Su, Z. Li and C. Li, J. Am. Chem. Soc., 2012, 134, 4258;
(b) J. Prakash and S. Roy, J. Org. Chem., 2002, 67, 7861; (c) C. Kuang,
Q. Yang, H. Senboku and M. Tokuda, Synthesis, 2005, 1319.
10 J. D. Griffin, M. A. Zeller and D. A. Nicewicz, J. Am. Chem. Soc., 2015,
137, 11340.
11 R. Zhou, H. Liu, H. Tao, X. Yu and J. Wu, Chem. Sci., 2017, 8, 4654.
12 (a) C. Giordano and A. Belli, J. Org. Chem., 1980, 45, 345; (b) D. J. Wilger,
J.-M. M. Grandjean, T. R. Lammert and D. A. Nicewicz, Nat. Chem., 2014,
6, 720; (c) D. S. Hamilton and D. A. Nicewicz, J. Am. Chem. Soc., 2012,
134, 18577.
Conflicts of interest
13 (a) R. C. Wende and P. R. Schreiner, Green Chem., 2012, 14, 1821;
(b) A. E. Allen and D. W. C. MacMillan, Chem. Sci., 2012, 3, 633.
There are no conflicts to declare.
´
14 M. A. Miranda and H. Garcıa, Chem. Rev., 1994, 94, 1063.
˜
15 P. Becker, T. Duhamel, C. J. Stein, M. Reiher and K. Muniz, Angew.
Notes and references
Chem., Int. Ed., 2017, 56, 8004.
1 (a) I. J. Collins, J. Chem. Soc., Perkin Trans. 1, 1998, 1869; (b) A. Hirata, 16 The beneficial effect of HFIP might be shifting the disproportiona-
S.-Y. Kim, N. Kobayakawa, N. Tanaka and Y. Kashiwada, Fitoterapia, tion equilibrium and stabilising the hypoiodite species.
2015, 102, 49; (c) T. K. Devon and A. I. Scott, Handbook of Naturally 17 M. Uyanik, H. Hayashi and K. Ishihara, Science, 2014, 345, 291.
Occurring Compounds, Academic Press, New York, 1975, vol. 1, p. 249. 18 For non-related hypoiodide catalysis in the a-lactonization of carbonyls:
2 (a) L. E. Johnson and A. Dietz, Appl. Microbiol., 1968, 16, 1815;
(b) J. A. Katzenellenbogen, R. Rai and W. Dai, Bioorg. Med. Chem.
Lett., 1992, 2, 1399; (c) J. D. Lambert, J. E. Rice, J. Hong, Z. Hu and
(a) M. Uyanik, D. Suzuki, T. Yasui and K. Ishihara, Angew. Chem., Int. Ed.,
2011, 50, 5331; (b) M. Uyanik, D. Suzuki, M. Watanabe, H. Tanaka,
K. Furukawa and K. Ishihara, Chem. Lett., 2015, 44, 387.
C. S. Yang, Bioorg. Med. Chem. Lett., 2005, 15, 873; (d) E.-I. Hwang, 19 (a) H. Hunsdiecker and C. Hunsdiecker, Chem. Ber., 1942, 75, 291;
B.-S. Yun, Y.-K. Kim, B.-M. Kwon, H.-G. Kim, H.-B. Lee, W.-J. Jeong
and S.-U. Kim, J. Antibiot., 2000, 53, 903.
(b) R. G. Johnson and R. K. Ingham, Chem. Rev., 1956, 56, 219;
(c) C. V. Wilson, Org. React., 1957, 9, 341.
´
3 (a) A. Molnar, G. A. Olah and G. K. S. Prakash, Hydrocarbon 20 (a) K. Kiyokawa, R. Ito and S. Minakata, Chem. Commun., 2018,
Chemistry, Wiley, New York, 2017, ch. 9; (b) T.-L. Ren, B.-H. Xu,
S. Mahmood, M.-X. Sun and S.-J. Zhang, Tetrahedron, 2017, 73, 2943;
(c) S. Zhang, L. Li, H. Wang, Q. Li, W. Liu, K. Xu and C. Zeng, Org.
54, 7609; (b) M. Yudasaka, T. Maruyama, E. Yamaguchi, N. Tada and
A. Itoh, Eur. J. Org. Chem., 2018, 550; (c) C. Tian, X. Yao, W. Ji,
Q. Wang, G. An and G. Li, Eur. J. Org. Chem., 2018, 5972; (d) K. Jia
and Y. Chen, Chem. Commun., 2018, 54, 6105; (e) G.-X. Li, X. Hu,
G. He and G. Chen, Chem. Sci., DOI: 10.1039/C8SC04134B.
21 For more details please see the ESI†.
˜
Lett., 2018, 20, 252; (d) S. Herold, D. Bafaluy and K. Muniz, Green
Chem., 2018, 20, 3191; (e) F. Rusch, J.-C. Schober and M. Brasholtz,
ChemCatChem, 2016, 8, 2881.
4 J. Richers, M. Heilmann, M. Drees and K. Tiefenbacher, Org. Lett., 22 N. A. Romero, K. A. Margrey, N. E. Tay and D. A. Nicewicz, Science,
2016, 18, 6472. 2015, 349, 1326.
5 (a) S. Sathyamoorthi and J. Du Bois, Org. Lett., 2016, 18, 6308; 23 6-Membered ring product 2u further corroborates this mechanistic
(b) H. Togo, T. Muraki, Y. Hoshina, K. Yamagushi and M. Yokoyama,
J. Chem. Soc., Perkin Trans. 1, 1997, 787; (c) T. Dohi, N. Takenaga,
A. Goto, A. Maruyama and Y. Kita, Org. Lett., 2007, 9, 3129;
proposal. If the intermediate II was formed by a 1,5 or 1,6 HAT from
the carbonyloxy radical, the corresponding formation of 5- and
6-membered rings should be observed.
(d) S. Banerjee, S. Sathyamoorthi, J. Du Bois and R. N. Zare, Chem. 24 (a) M. Schmittel and A. Burghart, Angew. Chem., Int. Ed., 1997, 36, 2550;
Sci., 2017, 8, 7003.
6 (a) N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016, 116, 10075;
(b) A. Albini, M. Mella and M. Freccero, Tetrahedron, 1994, 50, 575;
(c) A. M. P. Nicholas and D. R. Arnold, Can. J. Chem., 1982, 60, 2165.
(b) M. H. Shaw, J. Twilton and D. W. C. MacMillan, J. Org. Chem., 25 (a) M. Uyanik, D. Suzuki, M. Watanabe, H. Tanaka, K. Furukawa and
2016, 81, 6898; (c) Q. Qin, H. Jiang, Z. Hu, D. Ren and S. Yu, Chem.
Rec., 2017, 7, 754; (d) K. L. Skubi, T. R. Blum and T. P. Yoon, Chem.
Rev., 2016, 116, 10035; (e) J. Xuan and W.-J. Xiao, Angew. Chem., Int. 26 For related mechanisms: (a) C. Martınez and K. Muniz, Angew.
K. Ishihara, Chem. Lett., 2015, 44, 387; (b) M. Uyanik and K. Ishihara,
ChemCatChem, 2012, 4, 177.
´
˜
Ed., 2012, 51, 6828; ( f ) J. M. R. Narayanam and C. R. J. Stephenson,
Chem. Soc. Rev., 2011, 40, 102.
Chem., Int. Ed., 2015, 54, 8287; (b) P. Becker, T. Duhamel,
˜
C. S. Stein, M. Reiher and K. Muniz, ACS Catal., 2018, 8, 3918.
936 | Chem. Commun., 2019, 55, 933--936
This journal is ©The Royal Society of Chemistry 2019