10.1002/anie.201710776
Angewandte Chemie International Edition
COMMUNICATION
To demonstrate the synthetic value of the products, various
functionalizations were studied (Scheme 6). The N-methoxy group of
Acknowledgements
3aa was removed by treatment with NaH in DMF at 120 °C under
microwave irradiation leading to benzolactam 7 in 77% yield. Upon
reaction of 7 with triflic anhydride, 8 was obtained in 90% yield. The
latter product proved useful for the synthesis of isoquinolines 9-11,
which were accessed by reductive deoxygenation and cross-
couplings (for details see Supporting Information). 3,4-Dihydro-
isoquinolin 4ma could readily be converted into N-methoxy-
benzamide 3ma by treatment with a mixture of mesyl chloride and
triethylamine. The ease of this dehydration providing the product in
97% yield after 2 h at 0 °C was unexpected because the starting
material was stable at ambient conditions for weeks. Also surprising
was the reaction of 4ma with PDC, which led to 12 in 68% yield.
Apparently, oxidation had occurred at two positions, the hydroxyl
group and the benzylic C–H.[17] Product 12 proved valuable because
under basic conditions, lactones 13a-c were formed. While the first
product resulted from deprotonation of the hydroxyl group followed
by intramolecular carbonyl addition, lactones 13b and 13c were
obtained by the aforementioned process and a subsequent inter-
molecular esterification with MeOH or EtOH, respectively.
J.-R.H. acknowledges support by the Alexander von Humboldt
Foundation.
Keywords: rhodium catalysis • α-chloroaldehyde • hydrogen
bonding • isoquinolone
[1]
For recent reviews: a) C−H Bond Activation and Catalytic
Functionalization (Eds.: P. H. Dixneuf, H. Doucet), Springer
I
International Publishing, Cham, 2016; b) J. Wencel-Delord, F. W.
Patureau, F. Glorius, Top. Organomet. Chem. 2016, 55, 1; c) J. G. Kim,
K. Shin, S. Chang, Top. Organomet. Chem. 2016, 55, 29; d) T. Gensch,
M. N. Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc. Rev. 2016,
45, 2900; e) S.-S. Li, L. Qin, L. Dong, Org. Biomol. Chem. 2016, 14,
4554; f) R.-Y. Zhu, M. E. Farmer, Y.-Q. Chen, J.-Q. Yu, Angew. Chem.
Int. Ed. 2016, 55, 10578; Angew. Chem. 2016, 128, 10734; g) M.
Gulías, J. L. Mascareñas, Angew. Chem. Int. Ed. 2016, 55, 11000;
Angew. Chem. 2016, 128, 11164.
[2]
[3]
For selected review: Rh-Catalyzed Synthesis of Nitrogen-Containing
Heterocycles (Eds.: X.-F. Wu), Wiley-VCH, Weinheim, 2016.
a) X. Xu, Y. Liu, C.-M. Park, Angew. Chem. Int. Ed. 2012, 51, 9372;
Angew. Chem. 2012, 124, 9506; b) K. K. Gollapelli, S. Kallepu, N.
Govindappa, J. B. Nanubolu, R. Chegondi, Chem. Sci. 2016, 7, 4748.
For selected examples: a) W.-W .Chan, S.-F .Lo, Z. Zhou, W.-Y .Yu, J.
Am. Chem. Soc. 2012, 134, 13565; b) Y. Cheng, C. Bolm, Angew.
Chem. Int. Ed. 2015, 54, 12349; Angew. Chem. 2015, 127, 12526; c) H.
Wang, L. Li, S. Yu, Y. Li, X. Li, Org. Lett. 2016, 18, 2914; d) J. Jie, H. Li,
S. Wu, Q. Chai, H. Wang, X. Yang, RSC Adv. 2017, 7, 20548; e) B. Li,
B. Zhang, X. Fan, Chem. Commun. 2017, 53, 1297.
O
OTf
O
[4]
OMe
N
N
NH Tf2O, py
DCM, 0 °C
NaH, DMF
120 °C, Ar, MW, 2 h
Bn
Bn
Bn
Me
3aa
7, 77%
8, 90%
O
diverse
transfor-
mations
[5]
[6]
N. Guimond, S. I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 2011, 133,
6449.
H
N
N
N
N
a) N. J. Webb, S. P. Marsden, S. A. Raw, Org. Lett. 2014, 16, 4718; b)
H. Chu, S. Sun, J.-T. Yu, J. Cheng, Chem. Commun. 2015, 51, 13327;
c) M. Zhang, H.-J. Zhang, T. Han, W. Ruan, T.-B. Wen, J. Org. Chem.
2015, 80, 620; d) J. Wen, D. P. Tiwari, C. Bolm, Org. Lett. 2017, 19,
1706; e) D. Zhao, F. Lieb, F. Glorius, Chem. Sci. 2014, 5, 2869.
a) D.-G. Yu, F. de Azambuja, F. Glorius, Angew. Chem. Int. Ed. 2014,
53, 2754; Angew. Chem. 2014, 126, 2792; b) Z.-J. Wu, Y.-Q. Li, Z.-Z.
Huang, Eur. J. Org. Chem. 2016, 5399; c) J. Li, Z. Zhang, M. Tang, X.
Zhang, J. Jin, Org. Lett. 2016, 18, 3898; d) C. Yang, F. Song, J. Chen,
Y. Huang, Adv. Synth. Catal. 2017, 359, 3496.
Bn
O
Bn
10, 67%
Bn
9, 97%
11, 46%
Cl
Cl
O
OMe
OH
OMe
N
N
MsCl, NEt3
[7]
DCM, 0 °C, 2 h
Bn
4ma
Bn
3ma, 97%
PDC
DCM
RT, 20 h
Cl
O
Cl
O
Cl
O
OMe
N
[8]
[9]
3,3-Disubstituted cyclopropenes have been employed to realize the
reverse regioselective annulation: T. K. Hyster, T. Rovis, Synlett 2013,
24, 1842.
NEt3
NaH
O
O
H
DMF, RT
ROH
80 °C
N
O
Bn
COOR
Bn
OMe
Bn OH
O
13a, 37%
12, 68%
a) K. Kokubo, K. Matsumasa, M. Miura, M. Nomura, J. Org. Chem.
1997, 62, 4564; b) K. Kokubo, K. Matsumasa, Y. Nishinaka, M. Miura,
M. Nomura, Bull. Chem. Soc. Jpn. 1999, 72, 303; c) R. T. Stemmler, C.
Bolm, Adv. Synth. Catal. 2007, 349, 1185; d) M. Shimizu, H. Tsurugi, T.
Satoh, M. Miura, Chem. Asian J. 2008, 3, 881; e) F. Xiao, Q. Shuai, F.
Zhao, O. Baslé, G. Deng, C.-J. Li, Org. Lett. 2011, 13, 1614; f) H.-J.
Zhang, C. Bolm, Org. Lett. 2011, 15, 3900; g) M. Gao, M. C. Willis, Org.
Lett. 2017, 19, 2734.
13b, R = Me,
13c, R = Et,
46%
66%
Scheme 6. Product derivatizations.
In conclusion, α-chloroaldehydes have been used as equivalents
of terminal alkynes allowing to access isoquinolones and 2-
pyridones with complementary regioselectivity compared to known
processes. With sterically crowded amides or aldehydes, 3,4-
dihydroisoquinolins are formed as sole products. Presumably the
added sodium salt participates in the reaction by generating an ester
enolate species or by acting as ligand stabilizing the association of
the aldehyde to the metal by hydrogen bonding interactions. Finally,
both isoquinolones and 3,4-dihydroisoquinolins were converted to
other molecular scaffolds demonstrating their synthetic value.
[10] a) K. Tanaka, G. C. Fu, Org. Lett. 2002, 4, 933; b) K. Tanaka, Y.
Hagiwara, K. Noguchi, Angew. Chem. Int. Ed. 2005, 44, 7260; Angew.
Chem. 2005, 117, 7426; c) B. Ye, N. Cramer, Synlett 2015, 26, 1490; d)
H. Jo, J. Park, M. Choi, S. Sharma, M. Jeon, N. K. Mishra, T. Jeong, S.
Han, I. S. Kim, Adv. Synth. Catal. 2016, 358, 2714.
[11] a) X.-H. Liu, H. Park, J.-H. Hu, Y. Hu, Q.-L. Zhang, B.-L. Wang, B. Sun,
K.-S. Yeung, F.-L. Zhang, J.-Q. Yu, J. Am. Chem. Soc. 2017, 139, 888;
b) D. Mu, X. Wang, G. Chen, G. He, J. Org. Chem. 2017, 82, 4497; c) S.
W. Youn, H. J. Yoo, Adv. Synth. Catal. 2017, 359, 2176 and references
therein.
This article is protected by copyright. All rights reserved.