N. E. Leadbeater, J. R. Schmink / Tetrahedron 63 (2007) 6764–6773
6773
Medicinal Chemistry; Wiley-VCH: Weinhiem, 2005; (c)
€
Microwave-Assisted Organic Synthesis; Lidstrom, P., Tierney,
(t, 1H, J¼7.3 Hz), 6.62 (d, 2H, J¼7.7 Hz), 4.00 (br, 1H),
3.70 (s, 3H), 3.46 (t, 2H, J¼6.4 Hz), 2.63 (t, 2H, J¼6.4 Hz).
J. P., Eds.; Blackwell: Oxford, 2005.
2. For recent reviews, see: (a) Kappe, C. O. Angew. Chem., Int. Ed.
2004, 43, 6250; (b) Larhed, M.; Moberg, C.; Hallberg, A. Acc.
4.9. Reaction of anilines with methyl acrylate
using the multimode function
€
Chem. Res. 2002, 35, 717; (c) Lidstrom, P.; Tierney, J. P.;
Wathey, B.; Westman, J. Tetrahedron 2001, 57, 9225.
3. For an example of translation from monomode to multimode,
see: (a) Perio, B.; Dozias, M.-J.; Hamelin, J. Org. Process
Res. Dev. 1998, 2, 428; (b) Cleophax, J.; Liagre, M.; Loupy,
A.; Petit, A. Org. Process Res. Dev. 2000, 4, 498.
The glass tube was placed in a Teflon outer jacket and se-
cured with a Teflon top containing a ceramic thermowell.
Eleven other vessels with variously substituted aniline
substrates (a total of two vessels each of six anilines) were
similarly prepared, these being secured with a Teflon top
but with no thermal well. All the vessels were loaded onto
a 12-place rotor within the microwave cavity. The fiber-optic
probe was placed into the reaction containing the thermal
well. The vessels were irradiated using the ‘multimode irra-
diation’ function with the maximum power needed to reach
200 ꢁC in 10 min at which point the temperature was held
constant for an additional 20 min. Additionally, while under
irradiation, the samples were set to oscillate 360ꢁ in a clock-
wise–counterclockwise fashion while being agitated in a hor-
izontal motion, the agitation being set to 50% of maximum.
After allowing the reaction mixtures to cool to room temper-
ature, the crude products were characterized by comparison
of NMR data with that in the literature.
4. For recent reviews see: (a) Bellina, F.; Carpita, A.; Rossi, R.
ꢀ
Synthesis 2004, 2419; (b) Hassan, J.; Sevignon, M.; Gozzi,
C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359; (c)
Kotha, S.; Lahiri, S.; Kashinath, D. Tetrahedron 2002, 58,
9633.
5. For a review, see: Leadbeater, N. E. Chem. Commun. 2005,
2881.
6. Leadbeater, N. E.; Williams, V. A.; Barnard, T. M.; Collins,
M. J. Org. Process Res. Dev. 2006, 10, 833.
7. Arvela, R. K.; Leadbeater, N. E.; Collins, M. J. Tetrahedron
2005, 61, 9349.
8. For other reports of microwave-promoted Suzuki couplings in
water, see: (a) Blettner, C. G.; Konig, W. A.; Stenzel, W.;
Schotten, T. J. Org. Chem. 1999, 64, 3885; (b) Han, J. W.;
Castro, J. C.; Burgess, K. Tetrahedron Lett. 2003, 44, 9359;
(c) Appukkuttan, P.; Orts, A.; Chandran, R. P.; Goeman,
J. L.; Van der Eycken, J.; Dehaen, W.; Van der Eycken, E.
Eur. J. Org. Chem. 2004, 3277; (d) Gong, Y.; He, W. Org.
Lett. 2002, 4, 3803; (e) Namboodiri, V. V.; Varma, R. S.
Green Chem. 2001, 3, 146; (f) Zhang, W.; Chen, C. H.-T.;
Lu, Y.; Nagashima, T. Org. Lett. 2004, 6, 1473; (g)
4.10. Reaction of anilines with methyl acrylate using the
multimode function and with the addition of TBAOAc
The reaction vessels were loaded and heated in an identical
manner to the case of the analogous experiments above
but with the addition of tetrabutylammonium acetate
(0.25 mmol, 76.0 mg) to each vessel. Additionally, the
vessels were irradiated using the ‘multimode irradiation’
function with the maximum power needed to reach 200 ꢁC
in 6 min rather than10 min. The hold time was the same
(20 min).
€
Solodenko, W.; Schon, U.; Messinger, J.; Glinschert, A.;
Kirschning, A. Synlett 2004, 1699.
9. Banerjee, A.; Lee, K.; Falvey, D. E. Tetrahedron 1999, 55,
12699.
10. For other reports on microwave-promoted ether formation, see:
(a) Yadav, G. D.; Desai, N. M. Catal. Commun. 2006, 7, 325;
(b) Park, K. K.; Jeong, J. S. Tetrahedron 2005, 61, 545; (c)
Lloung, M.; Loupy, A.; Marque, S.; Petit, A. Heterocycles
2004, 63, 297; (d) Raner, K. D.; Strauss, C. R.; Trainor,
R. W.; Thorn, J. S. J. Org. Chem. 1995, 60, 2456.
11. Kremsner, J. M.; Stadler, A.; Kappe, C. O. J. Comb. Chem.
2007, 9, 285.
Acknowledgements
Milestone is thanked for the provision of a MultiSynth
microwave apparatus. Funding from the University of
Connecticut is acknowledged.
€
€
12. Nuchter, M.; Ondruschka, B.; Tied, A.; Lautenschlager, W.;
Borowski, K. J. American Genomic/Proteomic Technology
2001, 34.
References and notes
1. A number of books on microwave-promoted synthesis have
been published recently: (a) Microwaves in Organic
Synthesis; Loupy, A., Ed.; Wiley-VCH: Weinheim, 2006; (b)
Kappe, C. O.; Stadler, A. Microwaves in Organic and
13. For a review, see: Leadbeater, N. E.; Torenius, H. M.; Tye, H.
Comb. Chem. High Throughput Screen. 2004, 7, 511.
14. Amore, K. M.; Leadbeater, N. E.; Miller, T. A.; Schmink, J. R.
Tetrahedron Lett. 2006, 47, 8583.