Communication
Organic & Biomolecular Chemistry
Table 3 The reaction results of aldehydes with diselenidesa
Priority Academic Program Development of Jiangsu Higher
Education Institutions.
Notes and references
1 (a) N. A. McGrath and R. T. Raines, Acc. Chem. Res., 2011,
44, 752; (b) P. E. Dawson and S. B. H. Kent, Annu. Rev.
Biochem., 2000, 69, 923; (c) J. P. Tam and C. T. T. Wong,
J. Biol. Chem., 2012, 287, 27020; (d) L. Longobardo,
N. Cecere, M. DellaGreca and I. de Paola, Amino Acids,
2013, 44, 443; (e) J. Oh, E. Goo, I. Hwang and S. Rhee,
J. Biol. Chem., 2014, 289, 11465; (f) A. Ghassemian, X. Vila-
Farres, P. F. Alewood and T. Durek, Bioorg. Med. Chem.,
2013, 21, 3473.
a Reaction conditions: 1k (0.5 mmol), 2 (1.2 mmol) and TBP (4.0
equiv.), in EA (1 mL) in a sealed tube under Ar at 120 °C for 12 h.
b Isolated yield.
2 (a) G. Perin, E. J. Lenardao, R. G. Jacob and
R. B. Panatieri, Chem. Rev., 2009, 109, 1277;
(b) G. P. Howell, S. P. Fletcher, K. Geurts, B. Horst and
B. L. Feringa, J. Am. Chem. Soc., 2006, 128, 14977;
(c) M. Toyofuku, E. Murase, S. Fujiwara, T. Shin-ike,
H. Kuniyasu and N. Kambe, Org. Lett., 2008, 10, 3957;
(d) K. Kunchithapatham, C. C. Eichman and
J. P. Stambuli, Chem. Commun., 2011, 47, 12679;
(e) N. Hara, S. Nakamura, Y. Funahashi and N. Shibata,
Adv. Synth. Catal., 2011, 353, 2976; (f) S. Ozaki,
M. Adachi, S. Sekiya and R. Kamikawa, J. Org. Chem.,
2003, 68, 4586.
Scheme 1 The effect of TEMPO on reaction.
3 (a) T. Inoue, T. Takeda, N. Kambe, A. Ogawa, I. Ryu and
N. Sonoda, J. Org. Chem., 1994, 59, 5824; (b) C. C. Silveira,
A. L. Braga and E. L. Larghi, Organometallics, 1999, 18,
5183; (c) Y. Nishiyama, H. Kawamatsu, S. Funato,
K. Tokunaga and N. Sonoda, J. Org. Chem., 2003, 68, 3599.
4 (a) H. Cao, L. McNamee and H. Alper, J. Org. Chem., 2008,
73, 3530; (b) M. N. Burhardt, R. H. Taaning and
T. Skrydstrup, Org. Lett., 2013, 15, 948.
5 (a) M. Arisawa, T. Yamada and M. Yamaguchi, Tetrahedron
Lett., 2010, 51, 6090; (b) K. Ajiki, M. Hirano and K. Tanaka,
Org. Lett., 2005, 7, 4193.
6 (a) J. B. Azeredo, M. Godoi, R. S. Schwab, G. V. Botteselle
and A. L. Braga, Eur. J. Org. Chem., 2013, 5188;
(b) N. Sawada, T. Itoha and N. Yasuda, Tetrahedron Lett.,
2006, 47, 6595.
7 (a) M. Godoi, E. W. Ricardo, G. V. Botteselle, F. Z. Galetto,
J. B. Azeredo and A. L. Braga, Green Chem., 2012, 14, 456;
(b) S. Narayanaperumal, E. E. Alberto, K. Gul,
C. Y. Kawasoko, L. Dornelles, O. E. D. Rodrigues and
A. L. Braga, Tetrahedron, 2011, 67, 4723.
8 G. Marin, A. L. Braga, A. S. Rosa, F. Z. Galetto,
R. A. Burrowa, H. Gallardo and M. W. Paixao, Tetrahedron,
2009, 65, 4614.
Scheme 2 Proposed reaction mechanism.
might exist in this process. On the basis of the present experi-
mental results and previous related reports,9,12b,13 a plausible
mechanism is depicted in Scheme 2. First, the homolytic clea-
vage of TBP produced a tert-butoxyl radical. The tert-butoxyl
radical then abstracted hydrogen from the C(sp2)–H bond of
aldehyde to afford an acyl radical (A), which finally reacted
with RSSR (or RSeSeR) (1) to generate the product 3.
Conclusions
In summary, a convenient C–S and C–Se bond formation
based on the direct oxidative cross-couplings of aldehydes
with disulfides or diselenides under metal-free conditions was
developed. This method provides a very simple, atom-economi-
cal and environmentally friendly route for the syntheses of
thiol and selenol esters.
9 (a) H. Nambu, K. Hata, M. Matsugi and Y. Kita, Chem. –
Eur. J., 2005, 11, 719; (b) H. Nambu, K. Hata, M. Matsugi
and Y. Kita, Chem. Commun., 2002, 1082.
Acknowledgements
This work was supported by the National Natural Science 10 S. B. Bandgar, B. P. Bandgar, B. L. Korbad and S. S. Sawant,
Foundation of China (project 21272117 and 20972068) and the
Tetrahedron Lett., 2007, 48, 1287.
6074 | Org. Biomol. Chem., 2014, 12, 6072–6075
This journal is © The Royal Society of Chemistry 2014