Page 9 of 10
Journal of the American Chemical Society
(4) Zhdankin, V. V.; Krasutsky, A. P.; Kuehl, C. J.; Simonsen,
lylic Alcohols: Hydrogen Carbonate Ion as Nucleophile in
the Palladium-Catalyzed Allylic Substitution and Kinetic
Resolution." J. Am. Chem. Soc. 2003, 125, 6066; (d)
Lihammar, R.; Millet, R.; Bäckvall, J.-E. "Enzyme- and Ru-
thenium-Catalyzed Dynamic Kinetic Resolution of Func-
tionalized Cyclic Allylic Alcohols." J. Org. Chem. 2013, 78,
12114. For an enzymatic kinetic resolution to obtain enan-
tio-enriched acyclic allylic alcohols, see: (e) Burgess, K.;
Jennings, L. D. "Enantioselective Esterifications of Un-
saturated Alcohols Mediated by a Lipase Prepared from
Pseudomonas sp." J. Am. Chem. Soc. 1991, 113, 6129.
A. J.; Woodward, J. K.; Mismash, B.; Bolz, J. T. "Prepara-
tion, X-ray Crystal Structure, and Chemistry of Stable Az-
idoiodinanes Derivatives of Benziodoxole." J. Am. Chem.
Soc. 1996, 118, 5192.
1
2
3
4
5
6
7
8
(5) Yuan, Y.-A.; Lu, D.-F.; Chen, Y.-R.; Xu, H. "Iron-Catalyzed
Direct Diazidation for a Broad Range of Olefins." Angew.
Chem., Int. Ed. 2016, 55, 534.
(6) For selected examples of diazidation that are effective for
limited types of olefins reported prior to 2015, see: (a)
Minisci, F.; Galli, R. “Influence of the Electrophilic Char-
acter on the Reactivity of Free Radicals in Solution Reac-
tivity of Alkoxy, Hydroxy, Alkyl and Azido Radicals in
Presence of Olefins.” Tetrahedron Lett. 1962, 3, 533; (b)
Fristad, W. E.; Brandvold, T. A.; Peterson, J. R.; Thomp-
son, S. R. “Conversion of Alkenes to 1,2-Diazides and 1,2-
Diamines.” J. Org. Chem. 1985, 50, 3647; (c) Moriarty, R.
M.; Khosrowshahi, J. S. A Versatile Synthesis of Vicinal
Diazides Using Hypervalent Iodine. Tetrahedron Lett.
1986, 27, 2809; (d) Arimoto, M.; Yamaguchi, H.; Fujita, E.;
Nagao, Y.; Ochiai, M. Diazidation of Allylsilanes with a
Combination of Iodosylbenzene and Trimethylsilyl Az-
ide, and Synthesis of Allyl Azides. Chem. Pharm. Bull.
1989, 37, 3221; (e) Magnus, P.; Lacour, J. New Trialkylsilyl
Enol Ether Chemistry. Direct β-Azido Functionalization
of Triisopropylsilyl Enol Ethers. J. Am. Chem. Soc. 1992,
114, 767; (f) Chung, R.; Yu, E.; Incarvito, C. D.; Austin, D.
J. Hypervalent Iodine-Mediated Vicinal Syn Diazidation:ꢀ
Application to the Total Synthesis of (±)-
Dibromophakellstatin. Org. Lett. 2004, 6, 3881.
9
(12) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. "Organic
Azides: An Exploding Diversity of a Unique Class of
Compounds." Angew. Chem., Int. Ed. 2005, 44, 5188.
(13) Zhu, H.-T.; Arosio, L.; Villa, R.; Nebuloni, M.; Xu, H.
"Process Safety Assessment of the Iron-Catalyzed Direct
Olefin Diazidation for the Expedient Synthesis of Vicinal
Primary Diamines." Org. Process Res. Dev. 2017, 21, 2068.
(14) Zhu, C.-L.; Wang, C.; Qin, Q.-X.; Yruegas, S.; Martin, C.
D.; Xu, H. "Iron(II)-Catalyzed Azidotrifluoromethylation
of Olefins and N-Heterocycles for Expedient Vicinal Tri-
fluoromethyl Amine Synthesis." ACS Catal. 2018, 8, 5032.
(15) For a selected reference of characterized monomeric
iron-azide complexes and their IR measurements, see:
Grove, L. E.; Hallman, J. K.; Emerson, J. P.; Halfen, J. A.;
Brunold, T. C. “Synthesis, X-Ray Crystallographic Charac-
terization, and Electronic Structure Studies of a Di-Azide
Iron(III) Complex: Implications for the Azide Adducts of
Iron(III) Superoxide Dismutase.” Inorg. Chem. 2008, 47,
5762.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(16) For selected references of torsional effects in addition re-
actions to cyclic olefins and allylic alcohol derivatives, see
(a) Rondan, N. G.; Paddon-Row, M. N.; Caramella, P.;
Houk, K. N. "Nonplanar Alkenes and Carbonyls: a Mo-
lecular Distortion Which Parallels Addition Stereoselec-
tivity." J. Am. Chem. Soc. 1981, 103, 2436; (b) Paddon-Row,
M. N.; Rondan, N. G.; Houk, K. N. "Staggered Models for
Asymmetric Induction: Attack Trajectories and Confor-
mations of Allylic bonds from ab initio Transition Struc-
tures of Addition Reactions." J. Am. Chem. Soc. 1982, 104,
7162.
(17) For selected examples of using trichloroacetimidates in
organic synthesis, see: a) Overman, L. E. "A General
Method for the Synthesis of Amines by the Rearrange-
ment of Allylic Trichloroacetimidates. 1,3 Transposition
of Alcohol and Amine Functions." J. Am. Chem. Soc. 1976,
98, 2901; b) Schmidt, R. R.; Josef, M. "Facile Synthesis of
α- and β-O-Glycosyl Imidates; Preparation of Glycosides
and Disaccharides." Angew. Chem., Int. Ed. 1980, 19, 731;
c) Zhang, Q.; Stockdale, D. P.; Mixdorf, J. C.; Topczewski,
J. J.; Nguyen, H. M. "Iridium-Catalyzed Enantioselective
Fluorination of Racemic, Secondary Allylic Trichloroace-
timidates." J. Am. Chem. Soc. 2015, 137, 11912.
(18) Jung, M. E.; Lyster, M. A. "Conversion of Alkyl Carba-
mates into Amines via Treatment with Trimethylsilyl Io-
dide." J. Chem. Soc., Chem. Commun. 1978, 315.
(19) For a similar selective acylation procedure for semi-
synthesis of radio-labeled Tamiflu, see: Konno, F.; Arai,
T.; Zhang, M.-R.; Hatori, A.; Yanamoto, K.; Ogawa, M.;
Ito, G.; Odawara, C.; Yamasaki, T.; Kato, K.; Suzuki, K.
"Radiosyntheses of two Positron Emission Tomography
probes: [11C]Oseltamivir and its active metabolite [11C]Ro
64-0802." Bioorg. Med. Chem. Lett. 2008, 18, 1260.
(7) Shen, S.-J.; Zhu, C.-L.; Lu, D.-F.; Xu, H. "Iron-Catalyzed
Direct Olefin Diazidation via Peroxyester Activation
Promoted by Nitrogen-Based Ligands." ACS Catal. 2018,
8, 4473.
(8) For selected concurrent olefin diazidation methods, see:
a) Fu, N.; Sauer, G. S.; Saha, A.; Loo, A.; Lin, S. Metal-
Catalyzed Electrochemical Diazidation of Alkenes. Sci-
ence 2017, 357, 575; b) Peng, H.; Yuan, Z.; Chen, P.; Liu, G.
Palladium-Catalyzed Intermolecular Oxidative Diazida-
tion of Alkenes. Chin. J. Chem. 2017, 35, 876; c) Zhou, H.;
Jian, W.; Qian, B.; Ye, C.; Li, D.; Zhou, J.; Bao, H. Copper-
Catalyzed Ligand-Free Diazidation of Olefins with
TMSN3 in CH3CN or in H2O. Org. Lett. 2017, 19, 6120. For
a recent review for olefin azidation, see: d) Wu, K.; Liang,
Y.; Jiao, N. Azidation in the Difunctionalization of Ole-
fins. Molecules 2016, 21, 352; e) Sauer, G. S.; Lin, S. "An
Electrocatalytic Approach to the Radical Difunctionaliza-
tion of Alkenes." ACS Catal. 2018, 8, 5175.
(9) For experimental details, see Supporting Information.
(10) (a) Danishefsky, S.; Prisbylla, M. P.; Hiner, S. "The Use of
trans-Methyl-β-nitroacrylate in Diels–Alder Reactions." J.
Am. Chem. Soc. 1978, 100, 2918; see also: (b) J. Stoodley,
R.; Yuen, W.-H. "Enhancement of endo Selectivity in
Diels–Alder Reactions of Methyl (E)-3-nitroacrylate with
(E)-1-Oxybuta-1,3-dienes." Chem. Commun. 1997, 1371.
(11) For selected example of asymmetric synthesis of chiral
cyclic allylic alcohols via kinetic resolution methods, see:
(a) Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.;
Ikeda, M.; Sharpless, K. B. "Kinetic Resolution of Racemic
Allylic Alcohols by Enantioselective Epoxidation. A Route
to Substances of Absolute Enantiomeric Purity?" J. Am.
Chem. Soc. 1981, 103, 6237; (b) Kitamura, M.; Kasahara, I.;
Manabe, K.; Noyori, R.; Takaya, H. "Kinetic Resolution of
Racemic Allylic Alcohols by BINAP-Ruthenium(II) Cata-
lyzed Hydrogenation." J. Org. Chem. 1988, 53, 708; (c) Lü-
ssem, B. J.; Gais, H.-J. "Palladium-Catalyzed Deracemiza-
tion of Allylic Carbonates in Water with Formation of Al-
ACS Paragon Plus Environment