Page 9 of 10
Journal of the American Chemical Society
(c) Ferguson, J. S.; Yamato, K.; Liu, R.; He, L.; Zeng, X. C.; Gong,
5869; (b) Sun, C.; Ren, C. L.; Wei, Y. C.; Qin, B.; Zeng, H. Q. Chem.
1
2
3
4
5
6
7
8
9
B. Angew. Chem., Int. Ed. 2009, 48, 3150; (d) Li, Z. T.; Hou, J. L.;
Li, C.; Yi, H. P. Chem.Asian J. 2006, 1, 766; (e) Ong, W. Q.; Zeng,
H. Q. J. Incl. Phenom. Macrocycl. Chem. 2013, 76, 1; (f) Fu, H. L.;
Liu, Y.; Zeng, H. Q. Chem. Commun. 2013, 49, 4127.
Commun. 2013, 49, 5307.
(11) (a) Tang, H.; Doerksen, R. J.; Jones, T. V.; Klein, M. L.; Tew, G. N.
Chem. Biol. 2006, 13, 427; (b) Zhu, Y.-Y.; Yi, H.-P.; Li, C.; Jiang,
X.-K.; Li, Z.-T. Cryst. Growth Des. 2008, 8, 1294; (c) Please see
Figure S3 for additional building blocks F-M that could be
potentially useful for constructing macrocyclic hybrid pentamers and
for fine-tuning ion-binding affinity and selectivity. Nevertheless, our
preliminary results show that synthesis of these monomeric building
blocks such as pyridone N-oxide and their subsequent incorporation
into the pentameric framework turned out to be synthetically very
challenging, and we are currenlty working to improve and optimize
the synthetic methdologies. For instance, even thought monomeric
unit F can now be synthesized satisfactorily in our laboratory, for
some unknown reasons, it is very troublesome to couple two or more
F units or couple one unit of F with other units such as A to make a
dimer or higher oligomers as such amide coupling steps tend to give
very low yields.
(3) For some selected reviewers in foldamers, see: (a) Gellman, S. H.
Acc. Chem. Res. 1998, 31, 173; (b) Hill, D. J.; Mio, M. J.; Prince, R.
B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893; (c)
Gong, B. Acc. Chem. Res. 2008, 41, 1376; (d) Saraogi, I.; Hamilton,
A. D. Chem. Soc. Rev. 2009, 38, 1726; (e) Guichard, G.; Huc, I.
Chem. Commun. 2011, 47, 5933; (f) Zhang, D.-W.; Zhao, X.; Hou,
J.-L.; Li, Z.-T. Chem. Rev. 2012, 112, 5271.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(4) (a) Shirude, P. S.; Gillies, E. R.; Ladame, S.; Godde, F.; Shin-Ya, K.;
Huc, I.; Balasubramanian, S. J. Am. Chem. Soc. 2007, 129, 11890; (b)
Helsel, A. J.; Brown, A. L.; Yamato, K.; Feng, W.; Yuan, L. H.;
Clements, A. J.; Harding, S. V.; Szabo, G.; Shao, Z. F.; Gong, B. J.
Am. Chem. Soc. 2008, 130, 15784; (c) Sanford, A. R.; Yuan, L. H.;
Feng, W.; Flowersb, K. Y. R. A.; Gong, B. Chem. Commun. 2005,
4720; (d) Qin, B.; Ren, C. L.; Ye, R. J.; Sun, C.; Chiad, K.; Chen, X.
Y.; Li, Z.; Xue, F.; Su, H. B.; Chass, G. A.; Zeng, H. Q. J. Am. Chem.
Soc. 2010, 132, 9564; (e) Ren, C. L.; Maurizot, V.; Zhao, H. Q.;
Shen, J.; Zhou, F.; Ong, W. Q.; Du, Z. Y.; Zhang, K.; Su, H. B.;
Zeng, H. Q. J. Am. Chem. Soc. 2011, 133, 13930; (f) Shen, J.; Ma, W.
L.; Yu, L.; Li, J.-B.; Tao, H.-C.; Zhang, K.; Zeng, H. Q. Chem.
Commun. 2014, 50, 12730; (g) Hu, J.; Chen, L.; Ren, Y.; Deng, P.;
Li, X.; Wang, Y.; Jia, Y.; Luo, J.; Yang, X.; Feng, W.; Yuan, L. Org.
Lett. 2013, 15, 4670; (h) Jiang, H.; Leger, J.-M.; Guionneau, P.; Huc,
I. Org. Lett. 2004, 6, 2985; (i) Zhu, Y. Y.; Li, C.; Li, G. Y.; Jiang, X.
K.; Li, Z. T. J. Org. Chem. 2008, 73, 1745; (j) Ren, C. L.; Xu, S. Y.;
Xu, J.; Chen, H. Y.; Zeng, H. Q. Org. Lett. 2011, 13, 3840; (k) Zhao,
H. Q.; Shen, J.; Guo, J. J.; Ye, R. J.; Zeng, H. Q. Chem. Commun.
2013, 49, 2323; (l) Qin, B.; Jiang, L. Y.; Shen, S.; Sun, C.; Yuan, W.
X.; Li, S. F. Y.; Zeng, H. Q. Org. Lett. 2011, 13, 6212.
(12) Brumfiel,
G.
Nature
News
Blog
2011,
(13) Moore, S. S.; Tarnowski, T. L.; Newcomb, M.; Cram, D. J., J. Am.
Chem. Soc. 1977, 99, 6398
(5) (a) Qin, B.; Chen, X. Y.; Fang, X.; Shu, Y. Y.; Yip, Y. K.; Yan, Y.;
Pan, S. Y.; Ong, W. Q.; Ren, C. L.; Su, H. B.; Zeng, H. Q. Org. Lett.
2008, 10, 5127; (b) Ren, C. L.; Zhou, F.; Qin, B.; Ye, R. J.; Shen, S.;
Su, H. B.; Zeng, H. Q. Angew. Chem., Int. Ed. 2011, 50, 10612.
(6) (a) Qin, B.; Ong, W. Q.; Ye, R. J.; Du, Z. Y.; Chen, X. Y.; Yan, Y.;
Zhang, K.; Su, H. B.; Zeng, H. Q. Chem. Commun. 2011, 47, 5419;
(b) Du, Z. Y.; Ren, C. L.; Ye, R. J.; Shen, J.; Lu, Y. J.; Wang, J.;
Zeng, H. Q. Chem. Commun. 2011, 47, 12488; (c) Fu, H. L.; Chang,
H.; Shen, J.; Lu, Y.-J.; Qin, B.; Zhang, K.; Zeng, H. Q. Chem.
Commun. 2014, 50, 3582.
(7) (a) Cram, D. J.; Kaneda, T.; Helgeson, R. C.; Lein, G. M. J. Am.
Chem. Soc. 1979, 101, 6752; (b) Sessler, J. L.; Seidel, D. Angew.
Chem. Int. Ed. 2003, 42, 5134; (c) Pareek, Y.; Ravikanth, M.;
Chandrashekar, T. K. Acc. Chem. Res. 2012, 45, 1801; (d) Zhang,
W.; Moore, J. S. Angew. Chem. Int. Ed. 2006, 45, 4416; (e) Borisova,
N. E.; Reshetova, M. D.; Ustynyuk, Y. A. Chem. Rev. 2007, 107, 46;
(f) S. Lee, C.; Chen, H.; Flood, A. H. Nat. Chem. 2013, 5, 704.
(8) X-ray quality crystals for pentamer 2a were obtained by slow
diffusion of cyclohexane into dichloromethane over a few weeks at
room temperature.
(9) The crescent shape is used here to deduce the likely backbone
curvature inducible by multiple units E that are to be incorporated
into
a circularly folded pentamer and are rigidified by the
macrocyclic ring constraint to take up a crescent shape. But do note
that these acyclic oligomers consisting of multiple units E won’t
adopt a crescent shape similar to that of (B)3. Instead, the acyclic
oligomers (E)n will take a linear geometry via alternative H-bonds
formed between amide carbonyl O-atom and H-atom of the phenolic
hydroxyl group. See Ref 10b.
(10) (a) Yan, Y.; Qin, B.; Ren, C. L.; Chen, X. Y.; Yip, Y. K.; Ye, R. J.;
Zhang, D. W.; Su, H. B.; Zeng, H. Q. J. Am. Chem. Soc. 2010, 132,
ACS Paragon Plus Environment