PAPER
Electrosynthesis of N-Substituted Imidazole-2-thiones
1813
Table 4 (continued)
Prod- Ar
uct
Yield mp
(%)
(mg)
IR (KBr or MS
(ºC)b film)
m/z (%)
n (cm–1)
1H NMR (CDCl3); d, J (Hz)
arom CH= NH others
13C NMR (CDCl3), d
CH3
CH= arom C=S CH3 others
3e
4-Br
C6H4
76
213– 3045, 2922, 453 (M+ 2.18
7.46– 6.9
7.6 (m, (s,
8.8
(br s,
1 H)
104.5 121.7, 169.3 12.8
(342) 215 1600, 1550, +4), 451 (s,
123.3,
127.4,
131.6,
131.7,
132.8,
133.6,
136.5,
145,
1480, 1392, (M+ +
3 H)
4 H)
1 H)
1268, 1072, 2,12), 449
7.6–
7.7 (m,
4 H)
1004, 824, (M+, 7),
728
379 (17),
256 (25),
254 (25),
196 (44),
174(100),
157 (67),
155 (66),
102 (86),
77 (90),
150.3
76 (92),
51 (42).
a Satisfactory microanalyses obtained for all new compounds: C 0.31, H 0.16, N 0.21.
b Uncorrected.
and H2O (80 mL) and drying the ethereal solution with MgSO4.
References
Physical and spectroscopic properties of 1 are summarized in Table
2.
(1) Barba, F.; Velasco, M.D.; Guirado, A. Synthesis 1984, 593.
(2) Barba, F.; Velasco, M.D.; Guirado, A. Synthetic Commun.
1985, 15, 939.
(3) Barba, F.; Batanero, B. J. Org. Chem. 1993, 58, 6889.
(4) Barba, F.; Batanero, B. Electrochim. Acta. 1995, 40, 2779.
(5) (a) Postovskii, I. Ya. ; Sinegibskaya, A. D.; Novikova, A. P.;
Sidorova, L. P. Tezisy Dokl. Nauchn. Sess. Khim. Teknol.
Org. Soedin.Sery Sernistykh Neftei, 14th. 1975, 207; Chem.
Abstr. 1978, 88, 190 771.
Phenacyl Azide Thiosemicarbazones 2; General procedure
A solution of 1 (20 mmol) in MeOH (20 mL) was slowly added
dropwise in MeOH/H2O (80 mL, 1:1) and 5% HCl (2 mL) to a so-
lution of thiosemicarbazide (3.64 g, 40 mmol) under rapid stirring
below 10 ºC. The stirring was maintained during 24 h to complete
the reaction. The quantitatively precipitated solids 2a–e was isolat-
ed by suction and crystallized from EtOH. Physical and spectro-
scopic properties of 2 are summarized in Tables 3.
(b) Winton, J. M. Ger. Offen. 3031703, 1981; Chem.
Abstr.1981, 95, 81033.
(c) Karel, N. Acta Univ. Palacki Olomuc. Fac. Rerum. Nat.
1978, 57 (Chem. 17), 191.
(6) Lund, H. Oesterreich. Chem. Z. 1967, 68, 43.
(7) Feigl, F. In Pruebas a la gota en análisis orgánico; El Manual
Moderno S.A.: Mexico 1978; pp 405–406.
(8) Kobayashi, M.; Masao, Otsuka R.; Nagae, Y. Jpn. Kokai.
Tokkyo Koho JP 03137121; Chem. Abstr.1991, 115, 220 827.
(9) Kuwayama, R.;Wada, H.; Kusaka, A. Jpn. Kokai, Tokkyo
Koho JP 08302116; Chem. Absztr.1997, 126, 105321.
(10) Saccomano, N.A.; Vinick, F.J. US Patent 5459145; Chem.
Abstr. 1996, 124, 146130.
(11) Cetinkaya, B.; Cetinkaya, E.; Kuecuekbay, H.; Durmaz, R.
Arzneim-Forsch. 1996, 46, 1154.
(12) Miwa, T.; Okonogi, K.; Nagai, K. Japan Kokai Tokkyo Koho
JP 08245628; Chem. Abstr.1997, 126, 59812.
(13) Kulinski, T.; Tkaczynski, T. Pharmazie 1995, 50 , 821.
(14) Metaye, T.; Mettey, Y.; Lehuede, J.; Vierfond, J.M.; Lalgrie,
P. Biochem. Pharmacol. 1988, 37, 4263.
(15) (a) Boyer, J.H.; Straw, D. J. Am. Chem. Soc. 1952, 74, 4506.
(b) Boyer, H.J.; Straw, D. J. Am. Chem. Soc. 1953, 75, 1642.
Electrosynthesis of Imidazole-2-thiones 3; General Procedure
The electrochemical reductions were carried out using a concentric
cell with two compartments separated by a porous (D3) glass tubing
diaphragm and equipped with a magnetic stirrer. The solvent sup-
porting electrolyte (SSE) was DMF 0.05M in LiClO4. Anhyd solid
K2CO3 (2.0 g, 145 mmol) was added to the anodic compartment for
"in situ" neutralization of the generated HClO4. Anode: platinum.
Anolyte: LiClO4 (0.42 g, 4.0 mmol) in DMF (≤ 0.01% H2O) (10
mL). Cathode: mercury pool (20 cm2). Catholyte: LiClO4 (1.5 g, 14
mmol) and the corresponding thiosemicarbazone (2.0 mmol) in an-
hyd DMF (30 mL). A constant cathodic potential between –1.68
and –1.89 V vs. SCE (depending on the nature of 2) was applied.
The reaction time was about 1 h. At the end of the electrolysis (it
was considered finished when the current fell down to zero) the ca-
thodic solution was poured onto ice water (500 mL). After 12 h, the
precipitated solid was filtered and dried under reduced pressure and
chromatographed on a silica gel (17 × 2.5 cm) column, using tolu-
ene/MeOH (20:1) as eluent. Solid compounds were crystallized
from EtOH. Compounds 3a–e are described now for the first time
(Table 4).
Article Identifier:
1437-210X,E;1999,0,10,1809,1813,ftx,en;H00699SS.pdf
Acknowledgement
This study was supported by the Spanish Ministery of Education
and Culture. PB97-0753.
Synthesis 1999, No. 10, 1809–1813 ISSN 0039-7881 © Thieme Stuttgart · New York