3636
Organometallics 1998, 17, 3636-3638
Ca tion ic Gr ou p 4 Meta l Alk yl Com p ou n d s Con ta in in g
o-Ar ylp h en oxid e Liga tion
Matthew G. Thorn, Zac C. Etheridge, Phillip E. Fanwick, and Ian P. Rothwell*
Department of Chemistry, 1393 Brown Building, Purdue University,
West Lafayette, Indiana 47907-1393
Received April 15, 1998
Sch em e 1
Summary: Treatment of the dibenzyl compounds
[(ArO)2M(CH2Ph)2] (ArO ) 2,6-diphenyl-3,5-dimeth-
ylphenoxide, M ) Ti, Zr; ArO ) 2,6-diphenylphenoxide,
M ) Ti) with [B(C6F5)3] gave the corresponding zwitter-
ionic species [(ArO)2M+(CH2Ph)(η6-C6H5CH2B-(C6F5)3)].
Addition of [B(C6F5)3] to the titanium dimethyl com-
pounds [(ArO)2TiMe2] gave unstable species which po-
lymerize ethene and propene.
The great success of group 4 metallocene olefin
polymerization catalysts1 has stimulated interest in the
development of related homogeneous catalysts sup-
ported by non-Cp ancillary ligation.2,3 We report here
on the synthesis and reactivity of cationic alkyl deriva-
tives of Zr and Ti that contain o-phenyl phenoxide
ligation.
Addition of [B(C6F5)3]4 to benzene solutions of the
zirconium and titanium dibenzyl compounds 1 and 35
leads to the rapid (1H NMR) formation of the corre-
sponding zwitterionic species 2 and 4 (Schemes 1 and
2).6 The molecular structures of 2a and 4a (Figure 1)7
show a three-legged piano-stool geometry about the
metal center with the titanium benzyl ligand η1-bound.
The M-O(aryloxide) distances in 2a and 4a are among
the shortest for aryloxide ligands bound to these met-
als.8 In solution NMR data show no evidence for
displacement of the η6-bound anion by the o-phenyl
substituents of the aryloxide ligands.6 Indeed, at ambi-
ent temperatures there is evidence in the 1H NMR
spectrum for restricted rotation of the η6-bound arene
ring in 4b. Specifically, the resonances for the protons
(1) (a) Bochmann, M. J . Chem. Soc., Dalton Trans. 1996, 255. (b)
Brintzinger, H.-H.; Fischer, D.; Mu¨lhaupt, R.; Rieger, B.; Waymouth,
R. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143. (c) Mo¨hring, P. C.;
Coville, N. J . J . Organomet. Chem. 1994, 479, 1. (d) Kaminsky, W.;
Kulper, K.; Brintzinger, H. H. Angew. Chem., Int. Ed. Engl. 1985, 24,
507.
(2) (a) Scollard, J . D.; McConville, D. H. J . Am. Chem. Soc. 1996,
118, 10008. (b) Tsuie, B.; Swenson, D. C.; J ordan, R. F.; Petersen, J .
L. Organometallics 1997, 16, 1392. (c) Scollard, J . D.; McConville, D.
H.; Rettig, S. J . Organometallics 1997, 16, 1810. (d) Baumann, R.;
Davis, W. M.; Schrock, R. R. J . Am. Chem. Soc. 1997, 119, 3830. (e)
Go¨mez, R.; Green, M. L. H.; Haggitt, J . L. J . Chem. Soc., Chem.
Commun. 1994, 2607. (f) Friedrich, S.; Gade, L. H.; Edwards, A. J .;
McPartlin, M. J . Chem. Soc., Dalton Trans. 1993, 2861. (g) Brand, H.;
Capriotti, J . A.; Arnold, J . Organometallics 1994, 13, 4469. (h) Aoyagi,
K.; Gantzel, P. K.; Kalai, K.; Tilley, T. D. Organometallics 1996, 15,
923. (i) Cloke, F. G. N.; Geldbach, T. J .; Hitchcock, P. B.; Love, J . B. J .
Organomet. Chem. 1996, 506, 343. (j) Horton, A. D.; de With, J .; van
der Linden, A. J .; van de Weg, H. Organometallics 1996, 15, 2672. (k)
Shah, S. A. A.; Dorn, H.; Voigt, A.; Roesky, H. W.; Parisini, E.; Schmidt,
H.-G.; Noltemeyer, M. Organometallics 1996, 15, 3176. (l) Herskovics-
Korine, D.; Eisen, M. S. J . Organomet. Chem. 1995, 503, 307.
(3) For the polymerization of olefins by bidentate aryloxides see: (a)
van der Linden, A.; Schaverien, C. J .; Meijboom, N.; Grant, C.; Orpen,
A. G. J . Am. Chem. Soc. 1995, 117, 3008. (b) Fokken, S.; Spaniol, T.
P.; Kang, H.-C.; Massa, W.; Okuda, J . Organometallics 1996, 15, 5069.
For cationic zirconium alkyls supported by chelating phenoxides see:
(c) Cozzi, P. G.; Gallo, E.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C.
Organometallics 1995, 14, 4994.
(4) (a) Yang, X.; Stern, C. L.; Marks, T. J . J . Am. Chem. Soc. 1994,
116, 10015. (b) Ewen, J . A.; Elder, M. J . Chem. Abstr. 1991, 115,
136998g. (c) Massey, A. G.; Park, A. J . J . Organomet. Chem. 1964, 2,
245. (d) Bochmann, M.; Lancaster, S. J .; Hursthouse, M. B.; Malik, K.
M. A. Organometallics 1994, 13, 2235. (e) Gillis, D. J .; Tudoret, M.-J .;
Baird, M. C. J . Am. Chem. Soc. 1993, 115, 2543. (f) Pellecchia, C.;
Pappalardo, D.; Oliva, L.; Zambelli, A. J . Am. Chem. Soc. 1995, 117,
6593.
(5) (a) Latesky, S. L.; McMullen, A. K.; Niccolai, G. P.; Rothwell, I.
P. Organometallics 1985, 4, 902. (b) Chesnut, R. W.; Durfee, L. D.;
Fanwick, P. E.; Rothwell, I. P.; Folting, K.; Huffman, J . C. Polyhedron
1987, 6, 2019.
(6) Full experimental details and product characterization are
contained in the Supporting Information. Representative synthesis of
a zwiterionic species, [Ti(OC6H3Ph2-2,6)2(CH2Ph)][η6-C6H5CH2B(C6F5)3]
(4a ): a sample of [Ti(OC6H3Ph2-2, 6)2(CH2Ph)2] (3a ; 1.00 g, 1.39 mmol)
was placed in a solvent-sealed flask along with 1.3 equiv of tris-
(pentafluorophenyl)boron (0.92 g, 1.80 mmol) and 5 mL of benzene.
The reaction solution immediately turned red. The flask was left
undisturbed for 12 h, and then the solution was evacuated to dryness.
The resulting red solid was redissolved in a minimum of benzene and
layered with hexane, affording [Ti(OC6H3Ph2-2,6)2(CH2Ph)][η6-C6H5-
CH2B(C6F5)3] (4a ) as dark red crystals in 63% yield (1.07 g). Anal. Calcd
for C68H40BF15O2Ti: C, 66.26; H, 3.27. Found: C, 66.32; H, 3.28. 1H
NMR (C6D6, 30 °C): δ 6.75-7.30 (aromatics); 6.65 [d, 3J (1H-1H) )
7.0 Hz, ortho Ti-CH2Ph]; 6.07 [d, 3J (1H-1H) ) 6.7 Hz, ortho Ti-η6-
C6H5]; 4.78 [t, 3J (1H-1H) ) 7.5 Hz, meta Ti-η6-C6H5]; 4.43 [t, 3J (1H-
1H) ) 7.3 Hz, para Ti-η6-C6H5]; 2.77 (br, B-CH2); 2.12 (s, Ti-CH2).
Selected 13C NMR (C6D6, 30 °C): δ 161.9 (Ti-O-C); 151.0 (br, B-CH2);
146.2 (ipso BCH2-Ph); 101.2 (TiCH2). Synthesis of [Ti(OC6H3Ph2-2,6)2-
(C{CH3}C{Ph}CH2{η6-C6H5})][PhCH2B(C6F5)3] (5a ):
A sample of
[Ti(OC6H3Ph2-2,6)2(CH2Ph)][η6-C6H5CH2B(C6F5)3] (4a ; 130 mg, 0.105
mmol) was dissolved in 2 mL of benzene in a round-bottomed flask.
To this solution was added 1.0 equiv of 1-phenylpropyne (13.2 µL, 0.105
mmol). The color of this solution slowly turned from red to orange over
the course of 1 h. This orange solution was evacuated to dryness,
affording [Ti(OC6H3Ph2-2,6)2(C{CH3}C{Ph}CH2{η6-C6H5})][B(C6F5)3(CH2-
Ph)] (5a ) as a red glassy solid in 64% yield (90 mg). 1H NMR (C6D6, 30
°C): δ 6.60-7.40 (aromatics); 6.29 [t, 3J (1H-1H) ) 7.6 Hz, meta Ti-
η6-C6H5]; 5.82 [d, 3J (1H-1H) ) 7.4 Hz, ortho Ti-η6-C6H5]; 4.29 [t,
3J (1H-1H) ) 7.4 Hz, para Ti-η6-C6H5]; 3.22 (s, CH2); 3.17 (s, B-CH2);
1.87 (s, CH3). Selected 13C NMR (C6D6, 30 °C): δ 231.6 (Ti-C{CH3});
163.8 (Ti-O-C); 45.7 (CH2); 34.3 (Ti-C{CH3}). Attempts to isolate
5a as a crystalline solid have thus far been unsuccessful.
S0276-7333(98)00287-8 CCC: $15.00 © 1998 American Chemical Society
Publication on Web 07/30/1998