3370
K. Wilcoxen et al. / Bioorg. Med. Chem. Lett. 13 (2003) 3367–3370
The un-substituted phenyl analogue 19l had a Ki value
of 230 nM, much less active than 19d. The 2,4,6-tri-
methylphenyl derivative 19m (Ki=28 nM) was similarly
active as 19a, but the 2-chloro-4-methoxyphenyl was
not able to mimic the 2,4-chlorophenyl group and the
resulting compound 19n (Ki=70 nM) was 3-fold less
active than 19a. Other than 2,4,6-trimethylphenyl ring,
the 2-chloro-4-methylphenyl group was a reasonably
good replacement of the 2,4-dichlorophenyl ring (19o
and 19b, Ki=22 and 11 nM, respectively).
Schmidt, A. W.; Seeger, T.; Seymour, P.; Tingley, F. D., III;
Winston, E. N.; Chen, Y. L.; Heym, J. PNAS 1996, 93, 10477.
2. For a recent review, see: Grigoriadis, D. E.; Haddach, M.;
Ling, N.; Saunders, J. Curr. Med. Chem. 2001, 1, 63.
3. Wilcoxen, K.; Chen, C.; Huang, C.; Haddach, M.; Xie, M.;
Wing, L.; Grigoriadis, D. E.; De Souza, E. B.; McCarthy, J. R.
Book of Abstracts, 217th American Chemical Society National
Meeting, Anaheim, CA, USA, March 21–25, 1999; MEDI
002.
4. (a) Wustrow, D. J.; Capiris, T.; Rubin, R.; Knobelsdorf,
J. A.; Akunne, H.; Davis, M. D.; MacKenzie, R.; Pugsley,
T. A.; Zoski, K. T.; Heffner, T. G.; Wise, L. D. Bioorg. Med.
Chem. Lett. 1998, 8, 2067. (b) Gilligan, P. J.; Baldauf, C.;
Cocuzza, A.; Chidester, D.; Zaczek, R.; Fitzgerald, L. W.;
McElroy, J.; Smith, M. A.; Shen, H. L.; Saye, J. A.; Christ, D.;
Trainor, G.; Robertson, D. W.; Hartig, P. Bioorg. Med. Chem.
2000, 8, 181.
In general, the 1-alkyl-pyrazolo[4,3-b]pyridines 18 were
much more active than the corresponding 2-alkyl-iso-
mers 19, and the best compound from isomers 19 had a
Ki value of 4.4 nM (19d) on binding to the CRF1
receptor. The high polarity, which may contribute to the
lower binding affinity, is certainly an advantage for
designing CRF1 antagonists with desirable pharmaco-
kinetic profile and eventually in vivo efficacy.
5. Keller, C.; Bruelisauer, A.; Lemaire, M.; Enz, A. Drug
Metab. Dispos. 2002, 30, 173.
6. Chen, C.; Wilcoxen, K.; Bozigian, H.; Chen, T.; Cha, M.;
McCarthy, J. R.; Huang, C. H.; Haddach, M.; Zhu, Y. F.;
Murphy, B.; De Souza, E. B.; Grigoriadis, D. E. Book of
Abstracts, 221st ACS National Meeting, San Diego, April 1–5,
2001; MEDI 214.
7. Huang, C. Q.; Haddach, M.; Chen, C.; Wilcoxen, K. M.;
Xie, Y.; Grigoriadis, D. E.; McCarthy, J. R. Book of
Abstracts, 215th American Chemical Society National Meet-
ing, March 15, 1999, Anaheim, CA, USA. MEDI 002.
8. (a) Brown, H. C. In Determination of Organic Structure by
Physical Methods; Braude, E. A., Nachod, F. C., Eds; Aca-
demic: New York, 1955. (b) Hawley, S. R.; Bray, P. G.;
O’Neill, P. M.; Park, B. K.; Ward, S. A. Biochem. Pharmacol.
1996, 52, 723.
9. Yuan, J.; Gulianello, M.; De Lombaert, S.; Brodbeck, R.;
Kieltyka, A.; Hodgetts, K. J. Bioorg. Med. Chem. Lett. 2002,
12, 2133.
10. Angyal, S. J.; Angyal, C. L. J. Chem. Soc 1952, 1461.
11. Albert, A.; Goldacne, R.; Philips, J. J. Chem. Soc. 1948,
2240.
12. The calculated pKa value obtained from ACD/Labs 6.00
software, 2002, Advanced Chemistry Development, Inc. The
calculated pKa values were 9.26 for 4-aminopyridine and 9.0
for 4-aminoquinoline, respectively.
13. Tarzia, G.; Panzone, G.; Depaoli, A.; Schiati, P.; Selva, D.
Farmaco Ed. Sci. 1984, 39, 618.
14. (a) Kishimoto, S.; Noguchi, S.; Masuda, K. Chem. Pharm.
Bull. 1976, 24, 3001. (b) Lynch, H. Can. J. Chem. 1964, 42,
1605. (c) Guarneri, M.; Ferroni, R.; Fiorini, F. Gazz. Chim.
Ital. 1968, 98, 569.
15. Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter,
J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.;
Malecha, J. W.; Miyashiro, J. M.; Rogier, D. J.; Yu, S. S.;
Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory,
S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhui-
zen, A. W.; Zhang, Y. Y.; Isakson, P. C. J. Med. Chem. 1997,
40, 1347.
Selective compounds from this series were further tested
for functional antagonism on the CRF1 receptor. Thus,
in a CRF-stimulated c-AMP production assay, com-
pounds 18a, 18b, and 18c inhibited c-AMP accumula-
tion with low nanomolar IC50 values (15.8, 5.0, and 16
nM, respectively), while compounds 19d was less active
(IC50=365 nM). All compounds were examined for
activity in a CRF2-receptor binding assay as previously
described19 and none of the listed compounds showed a
does-dependent inhibition of binding and none had a
greater than 40% inhibition at a concentration of 10
mM. These data demonstrate these compounds are
selective CRF1 antagonists.
In conclusion, condensation of a phthaloylaminoaceto-
phenone derivatives 6 with N,N-dimethylformamide
dimethyl acetal gave the enamines 7, which was cyclized
with hydrazine to give the pivotal intermediate 4-amino-
3-arylpyrazoles 10, 11, and 12. Application of this key
intermediate towards the synthesis of pyrazolo[4,3-
b]pyridines 17–19 resulted in the discovery of a class of
very potent and relatively more polar (most likely more
basic) CRF1 receptor antagonists. Isomers 19, which
were more polar on silica gel chromatography, were less
active than the corresponding 18 subseries. Isomers 18
possessed a basic core structure (calculated pKa value
for 18d was 10.4, ACD) and displayed excellent
potency. The optimization of 18 will be reported in the
following paper.
16. (a) Sheehan, J. C.; Bolhofer, W. A. J. Am. Chem. Soc.
1950, 72, 2786. (b) Gabriel, S. Chem. Ber. 1908, 41, 1132.
17. Chen, C.; Wilcoxen, K.; McCarthy, J. R. Tetrahedron
Lett. 1998, 39, 8229.
18. Chen, C.; Dagnino, R., Jr.; De Souza, E. B.; Grigoriadis,
D. E.; Huang, C. Q.; Kim, K. I.; Liu, Z.; Moran, T.; Webb,
T. R.; Whitten, J. P.; Xie, Y. F.; McCarthy, J. R. J. Med.
Chem. 1996, 39, 4358.
Acknowledgements
We like to thank Mr. Zhengyu Liu for technical sup-
ports of this work.
References and Notes
19. For a CRF2 binding assay see: Grigoriadis, D. E.; Liu,
X. J.; Vaughn, J.; Palmer, S. F.; True, C. D.; Vale, W. W.;
Ling, N.; De Souza, E. B. Mol. Pharmacol. 1996, 50, 679.
1. Schulz, D. W.; Mansbach, R. S.; Sprouse, J.; Braselton,
J. P.; Collins, J.; Corman, M.; Dunaiskis, A.; Faraci, S.;