J. Am. Chem. Soc. 1998, 120, 12149-12150
12149
Scheme 1. The Synthesis of the Platinum Butadiyne
Heterocyclyne 4
Synthesis of Neutral Tetranuclear and Octanuclear
Macrocyclic Platinum-Butadiyne Heterocyclynes
Samia M. ALQaisi, Kevin J. Galat, Minghui Chai,
Dale G. Ray, III, Peter L. Rinaldi, Claire A. Tessier,* and
Wiley J. Youngs*
Department of Chemistry, The UniVersity of Akron
Akron, Ohio 44325-3601
ReceiVed March 27, 1998
We have been studying the coordination chemistry of cyclic
trialkyne ligands which we refer to as cyclynes and heterocy-
clynes. In these ligands the alkynes are arranged in a plane to
produce a triangular cavity. In many instances a single metal
atom can coordinate in the cavity to the three alkynes.1 In the
case of heterocyclynes, this coordination chemistry is somewhat
reminiscent of that of acetylide tweezer complexes,2 although the
cyclic nature of the heterocyclyne ligand can give additional
stabilization to the complex.1j
If the cavity of the heterocyclyne were larger, it could serve
to coordinate multiatom species in the cavity. In regards to
catenane and rotaxane3 synthesis, interesting species to thread
through a larger cavity include metal-acetylide polymers and
carbon nanotubules. A larger cavity could be obtained by
enlarging the ring to include more alkynes4 and/or to include
transition metals. Heterocyclynes with platinum atoms as the
heteroatoms within the ring have been synthesized.2q,5 Others
have reported that charged6 and neutral7 macrocyclic tetrametallic
planar squares can be assembled by strategies which involve
(1) (a) Ferrara, J. D., Tessier-Youngs, C., Youngs, W. J. J. Am. Chem.
Soc. 1985, 107, 6719. (b) Ferrara, J. D.; Tessier-Youngs, C.; Youngs, W. J.
Organometallics 1987, 6, 676. (c) Ferrara, J. D.; Tessier-Youngs, C.; Youngs,
W. J. J. Am. Chem. Soc. 1988, 110, 3326. (d) Djebli, A.; Ferrara, J. D.; Tessier-
Youngs, C.; Youngs, W. J. J. Chem. Soc., Chem. Commun. 1988, 548. (e)
Ferrara, J. D.; Tanaka, A. A.; Fierro, C.; Tessier-Youngs, C. A.; Youngs W.
J. Organometallics 1989, 8, 2089. (f) Kinder, J. D.; Tessier, C. A.; Youngs,
W. J. Synlett 1993, 149. (g) Youngs, W. J.; Kinder, J. D.; Bradshaw, J. D.;
Tessier, C. A. Organometallics 1993, 12, 2406. (h) Guo, L.; Bradshaw, J. D.;
Tessier, C. A.; Youngs, W. J. Organometallics 1995, 14, 586. (i) Guo, L.;
Bradshaw, J. D.; McConville, D. B.; Tessier, C. A.; Youngs, W. J.
Organometallics 1997, 16, 1685. (j) Zhang, D.; McConville, D. B.; Hrabusa,
J. M.; Tessier, C. A.; Youngs, W. J. J. Am. Chem. Soc. 1998, 120, 3506.
(2) (a) Yasufuku, K.; Yamazaki, H. Bull. Chem. Soc. Jpn. 1972, 45, 2664.
(b) Lang, H.; Zsolnai, L. J. Organomet. Chem. 1991, 406, C5. (c) Lang, H.;
Herres, M.; Zsolnai, L.; Imhof, W. J. Organomet. Chem. 1991, 409, C7. (d)
Lang, H.; Imhof, W. Chem. Ber. 1992, 125, 1307. (e) Lang, H.; Herres, M.;
Zsolnai, L. Organometallics 1993, 12, 5008. (f) Lang, H.; Herres, M.; Zsolnai,
L. Bull. Chem. Soc. Jpn. 1993, 66, 429. (g) Lang, H.; Herres, M.; Imhof, W.
J. Organomet. Chem. 1994, 465, 283. (h) Lang, H.; Weber, C. Organometallics
1995, 14, 4415. (i) Janssen, M. D.; Herres, M.; Spek, A. L.; Grove, D. M.;
Lang, H.; van Koten, G. J. Chem. Soc., Chem. Commun. 1995, 925. (j) Pulst,
S.; Arndt, P.; Baumann, W.; Tillack, A.; Kempe, R.; Rosenthal, U. J. Chem.
Soc., Chem. Commun. 1995, 1753. (k) Lang, H.; Blau, S.; Nuber, B.; Zsolnai,
L. Organometallics 1995, 14, 3216. (l) Janssen, M. D.; Herres, M.; Zsolnai,
L.; Spek, A. L.; Grove, D. M.; Lang, H.; van Koten, G. Inorg. Chem. 1996,
35, 2476. (m) Espinet, P.; Fornie´s, J.; Martinez, F.; Tomas, M. J. Chem. Soc.,
Dalton Trans. 1990, 791. (n) Berenguer, J. R.; Fornie´s, J.; Lalinde, E.; Martin,
A.; Moreno, M. T. J. Chem. Soc., Dalton Trans. 1994, 3343. (o) Berenguer,
J. R.; Fornie´s, J.; Lalinde, E.; Martinez, F. J. Organomet. Chem. 1994, 470,
C15. (p) Fornie´s J.; Lalinde, E. J. Chem. Soc., Dalton Trans. 1996, 2587. (q)
Zhang, D.; McConville, D. B.; Tessier, C. A.; Youngs, W. J. Organometallics
1997, 16, 824. (r) Ciriano, M.; Howard, J. A. K.; Spencer, J. L.; Stone, F. G.
A.; Wadepohl, H. J. Chem. Soc. Dalton Trans. 1979, 1749. (s) Varga, V.;
Petrusova´, L.; Cejka, J.; Mach, K. J. Organomet. Chem. 1997, 532, 251.
(3) (a) Ashton. P. R.; Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M.
T.; Menzer, S.; Pe´rez-Garcia, L.; Prodi, L.; Stoddart, J. F.; Venturi, M.; White,
A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1995, 117, 11171. (b) Bissell, R.
A.; Co´rdova, E.; Kaifer, A. E.; Stoddart, J. F. Nature 1994, 369, 133. (c)
Ashton, P. R.; Beˆlohradsky´, M.; Philp, D.; Stoddart, J. F. J. Chem. Soc., Chem.
Commun. 1993, 1269. (d) Ashton, P. R.; Beˆlohradsky´, M.; Philp, D.; Spencer,
N.; Stoddart, J. F. J. Chem. Soc., Chem. Commun. 1993, 1274.
knowledge of the coordination chemistry of the metal. These
previously reported squares have edges composed of relatively
bulky groups such as pyridine, 4,4′-bipyridine, 4,4′-dicyanobi-
phenyl, diazaperylene, and porphyrins. Herein we report the high-
yield, gram-scale synthesis of tetraplatinum and octaplatinum
square heterocyclynes which have large cavities and in which
the rings are composed of only platinum and butadiyne fragments.
These are the first reported examples of macrocycles where the
ring is composed of only transition metals and alkynes. It should
be noted that the relatively bulky groups on the edges of the
previously reported platinum squares6,7 increase the steric hin-
drance at the center relative to the squares reported here where
the edges are composed of butadiynes. This makes their cavities
more crowded and less likely to be good candidates for the
formation of catenanes and rotaxanes threaded with metal-
acetylide polymers and tubule derivatives.
The synthesis of the square [Pt(P2C2H4(C6H11)4)C4]4 4 is
outlined in Scheme 1. Chelating phosphines were used in order
to enforce the required cis geometry at the platinum atom. The
precursor 1,2-bis(dicyclohexylphosphino)ethane platinum di-
butadiyne 3 was prepared by two different methods with both
methods using the CuI-catalyzed8 coupling of platinum with acet-
ylides. Bubbling butadiyne9 into a suspension of [(C6H11)2P)2C2H4]-
PtCl2 1, diethylamine, diethyl ether, and a catalytic amount of
(6) (a) Fujita, M.; Yazaki, J.; Ogura, K. J. Am. Chem. Soc. 1990, 112,
5645. (b) Fujita, M.; Yazaki, J.; Ogura, K. Chem. Lett. 1991, 6, 1031. (c)
Fujita, M.; Yazaki, J.; Ogura, K. Tetrahedron Lett. 1991, 32, 5589. (d) Stang,
P. J.; Olenyuk, B. Acc. Chem. Res. 1997, 30, 502. (e) Manna, J.; Kuehl, C. J.;
Whiteford, J. A.; Stang, P. J.; Muddiman, D. C.; Hofstadler, S. A.; Smith, R.
D. J. Am. Chem. Soc. 1997, 119, 11611. (f) Whiteford, J. A.; Lu, C. V.; Stang,
P. J. J. Am. Chem. Soc. 1997, 119, 2524. (g) Stang, P. J.; Chen, K.; Arif, A.
M. J. Am. Chem. Soc. 1995, 117, 8793. (h) Stang, P. J.; Cao, D. H.; Saito, S.;
Arif, A. M.. J. Am. Chem. Soc. 1995, 117,6273. (i) Stang, P. J.; Chen, K. J.
Am. Chem. Soc. 1995, 117, 1667.
(4) Modern Acetylene Chemistry; Stang, P. J., Diederich, F., Ed.; VCH:
New York, 1995; Chapters 8, 9, 12, and 13.
(5) (a) Bradshaw, J. D.; Guo, L.; Tessier, C. A.; Youngs, W. J.;
Organometallics 1996, 15, 2582. (b) Pak, J. J.; Weakley, T. J. R.; Haley, M.
M. Organometallics 1997, 16, 4505.
(7) (a) Drain, C. M.; Lehn, J.-M. J. Chem. Soc., Chem. Commun. 1994,
2313-2315. (b) Drain, C. M.; Lehn, J.-M. J. Chem. Soc., Chem. Commun.
1995, 503.
10.1021/ja981040u CCC: $15.00 © 1998 American Chemical Society
Published on Web 11/06/1998