COMMUNICATIONS
(R)-6a ± e: The crude b-amino sulfones (R)-5a ± e were dissolved in
methanol (30 mL per mmol), and Boc2O (10 equiv) and triethylamine
(ca. 3 mL per mmol) were added at 08C. The reaction mixture was stirred
for 2 d. The solvent was evaporated under reduced pressure, and the
residue was diluted with diethyl ether. The mixture was washed with a
saturated aqueous solution of NH4Cl and then brine, and dried over
MgSO4. The solvent was evaporated, and the products were purified by
chromatography (SiO2, diethyl ether/pentane). The products (R)-6a ± e
were obtained as colorless solids.
the hydrogen positions could be localized, the remaining were calculated.
Reflections observed [I> 2s(I)]: 1826, parameters refined: 208; R
3
0.056, Rw 0.046; min./max. residual electron density 0.4/ 0.3e
.
The configuration at C8 was determined with respect to the known
configuration at C3. Crystallographic data (excluding structure factors)
for the structure reported in this paper have been deposited with the
Cambridge Crystallographic Data Centre as supplementary publication
no. CCDC-102345. Copies of the data can be obtained free of charge on
application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax:
(44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
[18] S. R. Hall, H. D. Flack, J. M. Stewart, XTAL3.2 Reference Manual,
Universities of West Australia, Geneva, Maryland, Lamb, Perth, 1992.
[19] Software for preparing the ball-and-stick plot representation: Ball &
Stick Version 2.2, A. Falk, N. Müller, G. Schoppel, L. Webb, Linz
(Austria), Stafford (UK).
[20] a) J. Martens, S. Lübben, Liebigs Ann. Chem. 1990, 949 ± 952; b) J.
Wilken, C. Thorey, H. Gröger, D. Haase, W. Saak, S. Pohl, J. Muzart, J.
Martens, Liebigs Ann. Chem. 1997, 2133 ± 2146, and references
therein.
[21] Preparation analogous to that of SAMP (S)-1.[15]
[22] V. Teetz, R. Geiger, R. Henning, H. Urbach, Arzneim. Forsch. 1984,
34, 1399 ± 1401.
[23] a) H. Feuer, F. Brown, J. Org. Chem. 1970, 35, 1468 ± 1471; b) H.
Susuki, S Aoyagi, C. Kibayashi, J. Org. Chem. 1995, 60, 6114 ± 6122;
c) N. Yamazaki, H. Suzuki, S. Aoyagi, C. Kibayashi, Tetrahedron Lett.
1996, 37, 6161 ± 6164; d) D. Enders, R. Lochtmann, Synlett 1997, 355 ±
357.
[24] a) J. A. Dale, D. L. Dull, H. S. Mosher, J. Org. Chem. 1969, 34, 2543 ±
2549; b) J. A. Dale, H. S. Mosher, J. Am. Chem. Soc. 1973, 95, 512 ±
519.
[25] The starting material for the synthesis of RAMBOÐ(R,R,R)-azabi-
cyclo[3.3.0]octane-3-carboxylic acid benzyl ester hydrochloride, which
was supplied by the Hoechst AG ± showed an ee value of 80%
(determined by 1H NMR spectroscopy from the de value of the
corresponding Mosher amide).
Received: July 16, 1998 [Z12157IE]
German version: Angew. Chem. 1999, 111, 212 ± 214
Keywords: aminations
´ asymmetric synthesis ´ chiral
auxiliaries ´ Michael additions ´ sulfones
[1] a) N. S. Simpkins in Sulphones in Organic Synthesis, Tetrahedron
Organic Chemistry Series, Vol. 10 (Eds.: J. E. Baldwin, P. D. Magnus),
Pergamon, Oxford, 1993; b) The Chemistry of Functional Groups: The
Chemistry of Sulphones and Sulphoxides, (Eds.: S. Patai, Z. Rappo-
port, C. J. Stirling), Wiley, Chichester, 1988; c) K. Schank, Methoden
Org. Chem. (Houben-Weyl) 4th ed. 1985, Vol. E11/2, pp. 1132 ± 1136;
d) T. Durst in Comprehensive Organic Chemistry, Vol. 3 (Eds.:
D. H. R. Barton, W. D. Ollis), Pergamon, Oxford, 1979, pp. 171 ±
213; e) N. S. Simpkins, Tetrahedron 1990, 46, 6951 ± 6984; f) L. Field,
Synthesis 1978, 713 ± 740.
[2] a) P. Perlmutter in Conjugate Addition Reactions in Organic Synthesis,
Tetrahedron Organic Chemistry Series, Vol. 9 (Eds.: J. E. Baldwin,
P. D. Magnus), Pergamon, Oxford, 1992; b) M. Schäfer, K. Drauz, M.
Schwarm, Methoden Org. Chem. (Houben-Weyl) 4th ed. 1995,
Vol. E21/5, pp. 5588 ± 5642; c) D. Enders, H. Wahl, W. Bettray, Angew.
Chem. 1995, 107, 527 ± 529; Angew. Chem. Int. Ed. Engl. 1995, 34,
453 ± 457, and references therein.
[26] All new compounds showed suitable spectroscopic data (IR, MS,
NMR) and correct elemental analysis or high-resolution mass spectra.
[3] a) D. Braghiroli, R. Avallone, M. D. Di Bella, Tetrahedron: Asymme-
try 1997, 8, 2209 ± 2213; b) H. Nakamura, H. Wu, J. Kobayashi, M.
Kobayashi, Y. Ohizumi, Y. Hirata, J. Org. Chem. 1985, 50, 2494 ± 2497;
c) Y. Ichikawa, Tetrahedron Lett. 1988, 29, 4957 ± 4958; d) B. Beagley,
P. H. Crackett, R. G. Pritchard, R. J Stoodley, J. Chem. Soc. Perkin
Trans. 1 1990, 773 ± 781; e) Y. Girard, M. Larue, T. R. Jones, J. Rokach,
Tetrahedron Lett. 1982, 23, 1023 ± 1026.
[4] R. Pauly, A. Sasaki, P. Portier, Tetrahedron Lett. 1994, 35, 237 ± 240.
[5] M. Hirama, H. Hioki, S. Ito, Tetrahedron Lett. 1988, 29, 3125 ± 3128.
[6] J. de Blas, J. C. Carretero, E. Dominguez, Tetrahedron Lett. 1994, 35,
4603 ± 4606.
[7] J. C. Wu, T. Pathak, W. Tong, J. M. Vial, G. Remaud, J. Chattopad-
hyaya, Tetrahedron 1988, 44, 6705 ± 6722.
A Novel High-Nuclearity Luminescent
Gold(i) ± Sulfido Complex**
Vivian Wing-Wah Yam,* Eddie Chung-Chin Cheng,
and Kung-Kai Cheung
[8] J. C. Carretero, R. G. Arrayas, J. Storch de Garcia, Tetrahedron Lett.
1997, 38, 8537 ± 8540.
There has been growing interest in the study of CuI, AgI,
and AuI complexes, and in particular polynuclear systems.
This stems from the tendency of these metal ions to form
clusters and aggregates as a result of weak metal ± metal
interactions[1] and the recent demonstration that a number of
these aggregates exhibit rich luminescence behavior.[2] Re-
cently, our group showed[3] that unsubstituted chalcogenides,
with their well-known ability to exhibit a variety of bridging
[9] D. DiPetro, R. M. Borzilleri, S. M. Weinreb, J. Org. Chem. 1994, 59,
5856 ± 5857.
[10] D. A. Alonso, A. Costa, B. Mancheno, C. Najera, Tetrahedron 1997, 53,
4791 ± 4814.
[11] R. Giovannini, M. Petrini, Synlett 1997, 90 ± 92.
[12] a) C. J. M. Stirling, S. T. McDowell, J. Chem. Soc. B 1967, 343 ± 348;
b) C. J. M. Stirling, S. T. McDowell, J. Chem. Soc. B 1967, 348 ± 351.
[13] H. Hirama, H. Hioki, S. Ito, C. Kubuto, Tetrahedron Lett. 1988, 29,
3121 ± 3124.
[14] A. Padwa, B. H. Norman, J. Org. Chem. 1990, 55, 4801 ± 4807.
[15] a) D. Enders in Asymmetric Synthesis, Vol. 3 (Ed.: J. D. Morrison),
Academic Press, Orlando, 1984, pp. 275 ± 339; b) D. Enders, P. Fey, H.
Kipphardt, Org. Synth. 1987, 65, 173 ± 182; c) D. Enders, P. Fey, H.
Kipphardt, Org. Synth. 1987, 65, 183 ± 202.
[*] Prof. V. W.-W. Yam, E. C.-C. Cheng, Dr. K.-K. Cheung
Department of Chemistry
The University of Hong Kong
[16] S. Matsubara, M. Yoshioka, K. Utimoto, Chem. Lett. 1994, 827 ± 830.
[17] Crystal structure analysis of (R,S)-4b (C17H28O3N2S): orthorhombic,
Pokfulam Road, Hong Kong SAR (China)
Fax: (852)2857-1586
space group P212121 (no. 19), a 8.2728(4), b 10.3874(5), c
3
22.205(1) , V 1908.14 3, Z 4, Mcalcd 340.49, 1calcd 1.185 g cm
.
[**] V.W.-W.Y. acknowledges financial support from the Research Grants
Council and The University of Hong Kong. E.C.-C.C. acknowledges
the receipt of a postgraduate studentship administered by The
University of Hong Kong.
Crystals were obtained from dichloromethane/n-hexane, crystal dimen-
sions ca. 0.3Â 0.3Â 0.3 mm3, Enraf-Nonius CAD4 diffractometer, CuKa
radiation (graphite monochromator, l 1.54179 . The structure was
solved with direct methods (Gensin, Gentan, from Xtal3.2).[18] Some of
Angew. Chem. Int. Ed. 1999, 38, No. 1/2
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3801-0197 $ 17.50+.50/0
197