Transition Metal Complexes with Sulfur Ligands, 134
49.78, 44.52 (SCH3). Ϫ 31P{1H} NMR (109.38 MHz, CD2Cl2): δ ϭ isotropic displacement parameter (2). In the case of 4 and 6 the
FULL PAPER
34.8 (s).
hydrogen atoms were geometrically positioned with isotropic dis-
placement parameters fixed at 1.5 times U(eq) of the preceding
carbon atom. In the case of 2 and 4, there are two crystallograph-
ically independent molecules per asymmetric unit. Selected crystal-
lographic data are summarized in Table 2.[18]
[Os(PEt3)2(ЈtpS4Ј)] (8): A solution of ЈtpS4Ј-H2 (3) (190 mg, 0.53
mmol) and LiOMe (40 mg, 1.06 mmol) in THF (20 mL) was stirred
for 1 h. Removal of the solvent yielded a yellow residue. It was
dissolved in MeOH (20 mL) and combined with OsCl3 · x H2O
(158 mg, 0.53 mmol) and PEt3 (1.60 mL, 11.8 mmol). The resulting
yellow-brown solution was heated under reflux for 2 h, cooled to
room temperature, reduced in volume to 10 mL, and Et2O (10 mL)
was added. A yellow solid precipitated, which was separated,
washed with MeOH (15 mL), Et2O (5 mL), and H2O (10 mL), and
dried in vacuo. Yield: 20 mg of 8 · 2 H2O (5%). Ϫ C30H46O2OsP2S4,
8 · 2 H2O (819.08): calcd. C 43.99, H 5.66, S 15.66; found C 44.27,
Acknowledgments
Support of these investigations by the Deutsche Forschungsgemein-
schaft and Fonds der Chemischen Industrie is gratefully acknowl-
edged.
1
H 5.53, S 15.63. Ϫ H NMR (269.6 MHz, CD2Cl2): δ ϭ 7.90 (m,
[1]
[1a] D. Sellmann, H.-E. Jonk, H.-R. Pfeil, G. Huttner, J. v. Sey-
2 H, C6H4), 7.85 (m, 2 H, C6H4), 7.20 (m, 4 H, C6H4), 6.85 (m, 2
H, C6H4), 6.55 (m, 2 H, C6H4), 1.95 (m, 12 H, PCH2), 1.00 (m, 18
H, CH2CH3). Ϫ 13C{1H} NMR (67.9 MHz, CD2Cl2): δ ϭ 158.98
(d), 139.35, 137.75, 131.54, 131.29, 130.02, 129.90, 129.62, 128.99,
121.26 [C(aryl)], 18.95 (vq, PCH2CH3), 8.51 (PCH2CH3). Ϫ
31P{1H} NMR (109.38 MHz, CD2Cl2): δ ϭ Ϫ25.0 (s). Ϫ FD MS
(CH2Cl2, 192Os); m/z: 784 [Os(PEt3)2(ЈtpS4Ј)]ϩ.
[1b]
erl, J. Organometal. Chem. 1980, 191, 171Ϫ179. Ϫ
D.
Sellmann, H. Friedrich, F. Knoch, M. Moll, Z. Naturforsch.
[1c]
1994, 49b, 76Ϫ88. Ϫ
D. Sellmann, E. Böhlen, Z. Natur-
[1d]
forsch. 1982, 37b, 1026Ϫ1033. Ϫ
D. Sellmann, T. Gott-
schalk-Gaudig, F. W. Heinemann, F. Knoch, Chem. Ber. 1997,
130, 571Ϫ579. Ϫ [1e] D. Sellmann, A. C. Hennige, F. W. Heine-
mann, Eur. J. Inorg. Chem. 1998, 819Ϫ826. Ϫ [1f] D. Sellmann,
B. Seubert, W. Kern, F. Knoch, M. Moll, Z. Naturforsch. 1991,
46b, 1435Ϫ1448. Ϫ [1g] D. Sellmann, H.-J. Kremitzl, F. Knoch,
[Ru(Cl)2(PPh3)(ЈtpS2(NH2)2Ј)] (9): ЈtpS2(NH2)2Ј (2) (168 mg, 0.52
mmol) was added to a brown solution of [Ru(Cl)2(PPh3)3] (495 mg,
0.52 mmol) in THF (25 mL). An orange solution formed which
was heated under reflux for 1 h, cooled to room temperature, and
reduced in volume to 15 mL. Yellow microcrystals precipitated
which were separated, washed with THF (15 mL) and Et2O (25
mL), and dried in vacuo. Yield: 330 mg of 9 · THF (76%). Ϫ
C40H39Cl2N2OPRuS2, 9 · THF (759.93): calcd. C 57.83, H 4.73, N
3.37, S 7.72; found C 57.90, H 4.64, N 3.37, S 7.45. Ϫ IR (KBr):
ν˜ ϭ 1616 cmϪ1 δ(NH). Ϫ 1H NMR (269.6 MHz, CDCl3): δ ϭ 7.85
(m, 7 H, C6H5), 7.15 (m, 1 H, C6H4), 7.40Ϫ7.05 (m,13 H, C6H4),
7.00 (m, 1 H, C6H4), 6.75 (m, 1 H, C6H4), 6.00 (m, 1 H, NH), 5.95
(m, 1 H, C6H4), 5.00 (s, 2 H, NH), 4.80 (m, 1 H, C6H4), 4.50 (m,
1 H, NH). Ϫ 13C{1H} NMR (67.7 MHz, CDCl3): δ ϭ 148.03,
144.16, 142.12, 139.86, 138.60, 135.90, 135.24, 134.50 (d), 133.38,
132.09, 131.56, 131.50, 131.24, 130.86, 130.45, 129.83, 129.02,
128.22 (d), 119.31, 119.11, 119.03 [C(aryl)]. Ϫ 31P{1H} NMR
(109.38 MHz, CD2Cl2): δ ϭ 43.5 (s). Ϫ FD MS (CH2Cl2, 102Ru);
m/z: 721 [Ru(Cl)(PPh3)(ЈtpS2(NH2)2Ј) Ϫ 2 H]ϩ.
[1h]
M. Moll, J. Biol. Inorg. Chem. 1996, 1, 127Ϫ135. Ϫ
D.
Sellmann, W. Kern, G. Pöhlmann, F. Knoch, M. Moll, Inorg.
[1i]
Chim. Acta 1991, 185, 155Ϫ162.
Ϫ
D. Sellmann, S.
Fünfgelder, G. Pöhlmann, F. Knoch, M. Moll, Inorg. Chem.
1990, 29, 4772Ϫ4778.
[2]
[3]
[4]
[5]
[6]
[7]
[8]
D. Sellmann, G. H. Rackelmann, F. W. Heinemann Chem. Eur.
J. 1997, 3, 2071Ϫ2080.
D. Sellmann, T. Gottschalk-Gaudig, F. W. Heinemann, Inorg.
Chem. 1998, 37, 3982Ϫ3988.
D. Sellmann, W. Reißer, J. Organometal. Chem. 1985, 294,
333Ϫ346.
T. Gottschalk, Diplomarbeit, Universität Erlangen-Nürnberg,
1994.
D. Sellmann, W. Reißer, J. Organometal. Chem. 1985, 297,
319Ϫ329.
D. Sellmann, I. Barth, F. Knoch, M. Moll, Inorg. Chem. 1990,
29, 1822Ϫ1826.
G. E. Mullen, M. J. Went, S. Wocadlo, A. K. Powell, P. J.
Blower, Angew. Chem. 1997, 109, 1254Ϫ1256; Angew. Chem.
Int. Ed. Engl. 1997, 36, 1205Ϫ1207 and literature cited therein.
J. F. K. Wilshire, Aust. J. Chem. 1988, 41, 995Ϫ1001.
R. C. Larock, Comprehensive Organic Transformations, VCH,
New York, 1989, pp. 411Ϫ415.
[9]
[10]
[11] [11a]
G. E. Hilbert, T. B. Johnson, J. Am. Chem. Soc. 1929, 51,
X-ray Structure Analyses of ЈtpS2(NO2)2Ј (1), ЈtpS2(NH2)2Ј (2),
[Ru(Cl)2(PPh3)(ЈtpS2(NH2)2Ј)] (9), [Ru(PEt3)2(ЈtpS4Ј)] · 0.5 Et2O (4
· 0.5 Et2O), and [Ru(CO)(PPh3)(ЈtpS4Ј)] · CH2Cl2 (6 · CH2Cl2):
Yellow cubes of 1 crystallized from a hot saturated solution of 1 in
THF upon cooling to room temperature, colorless cubes of 2 from
a satured CHCl3 solution. Orange cubes of 9 formed in the course
of 7 d, when a saturated CH2Cl2 solution of 9 was stored at room
temperature. Yellow plates of 4 and 6 were grown by layering
CH2Cl2 solutions of 4 and 6 with Et2O and MeOH, respectively,
at room temperature. In the case of 4, spontaneous separation of
racemic 4 occured. Both independent molecules present in the
asymmetric unit of 4 · 0.5 Et2O represent the same enantiomer.
Distances and angles of the two independent molecules differ only
marginally. Suitable single crystals were sealed under N2 in glass
capillaries. Data were corrected for Lorentz and polarization ef-
fects, no absorption correction. The structures were solved by direct
methods (SHELXTL 5.03[17]). Full-matrix least-squares refinement
was carried out on F2 (SHELXTL 5.03). All non-hydrogen atoms
were refined anisotropically, the positions of the hydrogen atoms
of 1, 2, and 9 were taken from the difference Fourier map and
were either refined isotropically (1, 9) or kept fixed with a common
1526Ϫ1533. Ϫ [11b] D. S. Tarbell, D. K. Fukushima, Org. Synth.
Coll. Vol. 1951, 3, 809Ϫ811.
[12] [12a]
K. Nakamoto, Infrared Spectra of Inorganic and Coordi-
nation Compounds, 4th ed., Wiley and Sons, New York, 1986,
p. 270. Ϫ [12b] D. Sellmann, R. Ruf, F. Knoch, M. Moll, Inorg.
Chem. 1995, 34, 4745Ϫ4755.
[13]
[14]
[15]
D. Sellmann, T. Gottschalk-Gaudig, F. W. Heinemann, Inorg.
Chim. Acta 1998, 269, 63Ϫ72.
I. P. Evans, A. Spencer, G. Wilkinson, J. Chem. Soc., Dalton
Trans. 1973, 204Ϫ209.
T. A. Stephenson, G. Wilkinson, J. Inorg. Nucl. Chem. 1966,
28, 945Ϫ956.
[16]
[17]
J. Degani, R. Fochi, Synthesis 1976, 7, 471Ϫ472.
SHELXTL 5.03 for Siemens Crystallographic Research Systems,
Siemens Analytical X-ray Instruments Inc., Madison, WI,
U.S.A., 1995.
[18]
Crystallographic data (excluding structure factors) for the struc-
tures reported in this paper have been deposited with the Cam-
bridge Crystallographic Data Centre as CCDC-102376 (1),
-102377 (2), -102378 (4), -102379 (6), -102380 (9). Copies of the
data can be obtained free of charge on application to CCDC,
12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. code ϩ
44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].
H. D. Flack, Acta Crystallogr. 1983, A39, 876Ϫ881.
Received August 7, 1998
[19]
[I98268]
Eur. J. Inorg. Chem. 1999, 333Ϫ339
339