10.1002/anie.202106742
Angewandte Chemie International Edition
COMMUNICATION
[15] a) X. Xie, S. Ma, Chem. Commun. 2013, 49, 5693; b) B. Alcaide, P.
Almendros, T. Martínez del Campo, E. Soriano, J. Marco‐Contelles,
Chem. Eur. J. 2009, 15, 1909.
Keywords: Iron catalysis • cross-coupling • Grignard reagents •
fluoroalkyl allenes
[16] Y. Qiu, B. Yang, C. Zhu, J.-E. Bäckvall, Angew. Chem. Int. Ed. 2016, 55,
6520; Angew. Chem. 2016, 128, 6630;
[1]
a) S. Ma, Chem. Rev. 2005, 105, 2829; b) C. Aubert, L. Fensterbank, P.
Garcia, M. Malacria and A. Simonneau, Chem. Rev. 2011, 111, 1954; c)
N. Krause and C. Winter, Chem. Rev. 2011, 111, 1994; d) N. Krause and
A. S. K. Hashmi, “Modern Allene Chemistry” Wiley-VCH, Weinheim,
2004. e) X. Huang and S. Ma, Acc. Chem. Res. 2019, 52, 1301; f) J. M.
Alonso and P. Almendros, Chem. Rev. 2021, 121, 4193.
1196; Angew. Chem. 2004, 116, 1216; b) S. Yu and S. Ma, Angew. Chem.
Int. Ed. 2012, 51, 3074; Angew. Chem. 2012, 124, 3128.
a) B. Yang, Y. Qiu, and J.-E. Bäckvall, Acc. Chem. Res. 2018, 51, 1520;
b) C. Zhu, B. Yang, B. Khanh Mai, S. Palazzotto, Y. Qiu, A.
Gudmundsson, A. Ricke, F. Himo, and J.-E. Bäckvall, J. Am. Chem. Soc.
2018, 140, 14324; c) M.-B. Li, A. K. Inge, D. Posevins, K. P. J. Gustafson,
Y. Qiu, and J.-E. Bäckvall, J. Am. Chem. Soc. 2018, 140, 14604; d) J.
Liu, A. Ricke, B. Yang and J.-E. Bäckvall, Angew. Chem. Int. Ed. 2018,
57, 16842; Angew. Chem. 2018, 130, 17084. e) M.-B. Li, D. Posevins, A.
Geoffroy, C. Zhu, and J.-E. Bäckvall, Angew. Chem. Int. Ed. 2020, 59,
1992; Angew. Chem. 2020, 132, 2008; (f) M.-B. Li, Y. Yang, A. A. Rafi,
M. Oschmann, E. Svensson Grape, A. K. Inge, A. Córdova, and J.-E.
Bäckvall, Angew. Chem. Int. Ed. 2020, 59, 10391; Angew. Chem. 2020,
132, 10477.
[17] S. Sandl, A. Jacobi von Wangelin, Angew. Chem. Int. Ed. 2020, 59, 5434;
Angew. Chem. 2020, 132, 5474.
[18] a) J. D. Sears, S. B. MuÇoz, S. L. Daifuku, A. A. Shaps, S. H. Carpenter,
W.W. Brennessel, M. L. Neidig, Angew. Chem. Int. Ed. 2019, 58, 2769;
Angew. Chem. 2019, 131, 2795; b) R. B. Bedford, Acc. Chem. Res. 2015,
48, 1485; c) A. Fürstner, R. Martin, H. Krause, G. Seidel, R. Goddard, C.
W. Lehmann, J. Am. Chem. Soc. 2008, 130, 8773.
[2]
[3]
[19] The stereospecificity with methoxy as the leaving group, >99% syn-
displacement, is the highest ever reported for iron-catalyzed substitution
of propargylic substrates. In ref. [10] and [11] the stereospecificity is
much lower; In ref. [10] it is at best 92% syn / 8% anti and in ref. [11] the
reaction proceeded predominantly anti at low temp (-78 oC) but 76% syn
/ 24% anti at 0 oC.
[20] For recent reviews on catalytic asymmetric syntheses of allenes see: a)
J. Ye, S. Ma, Org. Chem. Front., 2014, 1, 1210; b) R. K. Neff, D. E. Frantz,
ACS Catal., 2014, 4, 519; c) W. -D. Chu, Y. Zhang, J. Wang, Catal. Sci.
Technol., 2017, 7, 4570.
[21] For enantioselective synthesis of allenylboronates see: a) H. Ito, Y.
Sasaki, M. Sawamura, J. Am. Chem. Soc. 2008, 130, 15774; b) D.-W.
Gao, Y. Xiao, M. Liu, Z. Liu, M. K. Karunananda, J. S. Chen, K. M. Engle,
ACS Catal. 2018, 8, 3650; c) H. L. Sang, S. Yu, S. Ge, Org. Chem. Front.
2018, 5, 1284; d) Y. Huang, J. del Pozo, S. Torker, A. H. Hoveyda J. Am.
Chem. Soc. 2018, 140, 2643.
[4]
[5]
B. Yang, C. Zhu, Y. Qiu, J.-E. Bꢀckvall, Angew. Chem., Int. Ed. 2016, 55,
5568; Angew. Chem. 2016, 128, 5658.
a) A. Guðmundsson, K. P. J. Gustafson, B. K. Mai, B. Yang, F. Himo, J.-
E. Bꢀckvall, ACS Catalysis 2018, 8, 12; b) A. Guðmundsson, K. P. J.
Gustafson, B. K. Mai, B. Yang, F. Himo, J.-E. Bäckvall, ACS Catal. 2019,
9, 1733.
[6]
[7]
a) A. S. K. Hashmi, Angew. Chem. Int. Ed. 2000, 39, 3590; Angew. Chem.
2000, 112, 3737; b) S. Ma, Acc. Chem. Res. 2003, 36, 701; c) K.
Brummond, J. DeForrest, Synthesis 2007, 795; d) S. Yu, S. Ma, Chem.
Commun. 2011, 47, 5384; e) S. Kitagaki, F. Inagaki, C. Mukai, Chem.
Soc. Rev. 2014, 43, 2956; f) L. Liu, R. M. Ward, J. M. Schomaker, Chem.
Rev. 2019, 119, 12422; g) X. Huang, S. Ma, Acc. Chem. Res. 2019, 52,
1301.
a) D. J. Burton, G. A. Hartgraves, J. Fluorine Chem. 2009, 130, 254; (b)
T. S. N. Zhao, K. J. Szabꢁ, Org. Lett. 2012, 14, 3966; (c) X. Jiang, F.-L.
Qing, Beilstein J. Org. Chem. 2013, 9, 2862; (d) Y. Miyake, S. -I. Ota, M.
Shibata, K. Nakajima, Y. Nishibayashi, Chem. Commun. 2013, 49, 7809;
(e) Y.-L. Ji, J.-J. Kong, J.-H. Lin, J.-C., Xiao, Y.-C. Gu, Org. Biomol. Chem.
2014, 12, 2903; (f) G. Li, P. D. Gagare, P. V. Ramachandran,
Tetrahedron Lett. 2014, 55, 5736; (g) B. R. Ambler, S. Peddi, R. A.
Altman, Synthesis 2014, 46, 1938; (h) B. R. Ambler, S. Peddi, R. A.
Altman, Org. Lett. 2015, 17, 2506; (i) Y.-L. Ji, J.-J. Luo, J.-H. Lin, J.-C.
Xiao, Y.-C. Gu, Org. Lett. 2016, 18, 1000.
[8]
[9]
A.S.K. Hashmi, G. Szeimies, Chem. Ber., 1994, 127, 1075.
a) D. J. Pasto, G. F. Hennion, R. H. Shults, A. Waterhouse, S. -K. Chou,
J. Org. Chem. 1976, 41, 3496; b) D. J. Pasto, S. -K. Chou, A. Waterhouse,
R. H. Shults, G. F. Hennion, J. Org. Chem. 1978, 43, 1385; c) P.
Domingo‐Legarda, R. Soler‐Yanes, M. T. Quirós‐López, E. Buñuel, D. J.
Cárdenas, Eur. J. Org. Chem., 2018, 4900; d) I. Manjón-Mata, M. T.
Quirós, E. Buñuel, D. J. Cárdenas, Adv. Synth. Catal. 2020, 362, 146.
[10] A. Fürstner, M. Mendez, Angew. Chem. Int. Ed. 2003, 42, 5355; Angew.
Chem. 2003, 115, 5513.
[11] a) S. N. Kessler, J.-E. Bäckvall, Angew. Chem. Int. Ed. 2016, 55, 3734;
Angew. Chem. 2016, 128, 3798; b) S. N. Kessler, F. Hundemer, J.-E.
Bäckvall, ACS Catal. 2016, 6, 7448.
[12] The proposed mechanism for formation of product 3 involves the
formation of a propargyl radical, followed by further reduction by Fe or
Mg species and β-fluoride elimination:
[13] For a related C-F bond cleavage see: H. Amii, T. Kobayashi, Y. Hatamoto,
K. Uneyama, Chem. Commun., 1999, 1323.
[14] The Fe(acac)3 obtained from Sigma-Aldrich had a copper content of 0.5
ppm.
5
This article is protected by copyright. All rights reserved.