Brief Articles
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 10 3643
(7) (a) Fidock, D. A.; Rosenthal, P. J.; Croft, S. L.; Brun, R.; Nwaka,
S. Antimalarial drug discovery: efficacy models for compound
screening. Nat. Rev. Drug Discov. 2004, 3, 509-520. (b) Butler,
D.; Maurice, J.; O’Brien, C. Time to put malaria control on the
global agenda. Nature 1997, 386, 535-541.
(8) Calas, M.; Cordina, G.; Bompart, J.; Ben Baru, M.; Jei, T.;
Ancelin, M. L.; Vial, H. Antimalarial Activity of Molecules
Interfering with Plasmodium falciparum Phospholipid Metabo-
lism. Structure-Activity Relationship Analysis. J. Med. Chem.
1997, 40, 3557-3566.
(9) Calas, M.; Ancelin, M. L.; Cordina, G.; Portefaix, P.; Piquet, G.;
Vidal-Sailhan, V.; Vial, H. Antimalarial activity of compounds
interfering with Plasmodium falciparum phospholipid metabo-
lism: comparison between Mono- and Bisquaternary ammonium
salts. J. Med. Chem. 2000, 43, 505-516.
(10) Wengelnik, K.; Vidal, V.; Ancelin, M. L.; Cathiard, A. M.; Morgat,
J. L.; Kocken, C. H.; Calas, M.; Herrera, S.; Thomas, A. W.; Vial,
H. J. A class of potent antimalarials and their specific accumula-
tion in infected erythrocytes. Science 2002, 295, 1311-1314.
(11) Ancelin, M. L.; Calas, M.; Bompart, J.; Cordina, G.; Martin, D.;
Bari, M. B.; Jei, T.; Druilhe, P.; Vial, H. Antimalarial activity of
77 phospholipid polar head analogues: close correlation between
inhibition of phospholipid metabolism and in vitro Plasmodium
falciparum growth. Blood 1998, 91 (4), 1426-1437.
(12) Vial, H.; Ancelin, M. L. in Malaria: Parasite Biology, Patho-
genesis, Protection. Sherman, I. W., Ed.; American Society for
Microbiology: Washington, DC, 1998; pp 159-175.
(13) Vial, H.; Ancelin, M. L. Malarials Lipids, an overview. In
Subcellular Biochemistry; Avila, J. L.; Harris, J. R., Eds.; Plenum
Press: New York, 1992; Vol. 18, pp 259-306.
(14) All animal study protocols were performed in accordance with
legislative guidelines. All nonhuman primate study protocols
were evaluated and approved by independent animal care and
use committees before the beginning of the studies.
(15) Ainscow, T. A.; Belmont, M. R.; Henshall, J. L.; Hooper, R. M.and
Simmonds, D. J. Synthesis of four n-alkanes with terminal
dipolar substituents. Tetrahedron 1987, 43 (1), 115-122.
(16) Schultz, W. E.; Machula, H. J.; Feinendegen, L. E. Synthesis of
1-carbon-14-17-iodoheptadecano¨ıc acid. J. Radioanal. Nucl.
Chem. 1989, 135, 199-205.
(17) Cram, D. J.; Allinger, N. L.; Steinberg, H. Macro rings. VII. The
spectral consequences of bringing two benzene rings face to face.
J. Am. Chem. Soc. 1954, 76, 6132-6141.
(18) Wood, W. The preparation of n-octadecylamine hydrochloride.
J. Chem. Soc., Abstracts, 1953, 3327.
(19) Svendsen, A.; Boll, P. M. Naturally occurring lactones and
lactams. V. Halogenated â-keto esters as starting materials for
the synthesis of tetronic acids. Tetrahedron 1973, 29, 4251-
4258.
(20) Costa, T.; Wuster, M.; Herz, A.; Shimohigashi, Y.; Chen, H. C.;
Rodbard, D. Receptor binding and biological activity of bivalent
enkephalins. Biochem. Pharmacol. 1985, 34, 25-30.
(21) Portoghese, P. S. Bivalent ligands and the message address
concept in the design of selective opioid receptor antagonists.
Trends Pharmacol. Sci. 1989, 10, 230-235.
(22) Cheronis, J. C.; Whalley, E. T.; Nguyen, K. T.; Eubanks, S. R.;
Allen, L. G.; Duggan, M. J.; Loy, S. D.; Bonham, K. A.; Blodgett,
J. K. A new class of bradykinin antagonists: synthesis and in
vitro activity of bissuccinimidoalkane peptide dimmers. J. Med.
Chem. 1992, 35, 1563-72.
dried (Na2SO4), and concentrated under reduced pressure to
give a yellow oil which was directly used for the next step.
General Procedure B for the Preparation of Mono-
thiazolium Salts. To a solution of thiazole derivative in EtOH
was added 1-bromododecane, and the mixture was stirred for
72 h at 60 °C. The solvent was evaporated, the residue was
triturated with Et2O, and the mixture was filtered. The
precipitate was crystallized from iPrOH to give the desired
compound.
General Procedure C for the Preparation of N-Dupli-
cated Thiazolium Salts. To a solution of thiazole derivative
(1.0 equiv) in CH3CN was added the appropriate diiodoalkane
(0.25 equiv), and the mixture was refluxed under nitrogen
atmosphere for 72 h. The solvent was evaporated, and the
residue was usually purified by crystallization from iPrOH at
-40 °C for 24 h. Filtration of the crystals, washing with chilled
iPrOH and Et2O, and drying afforded the desired compound.
For those compounds that did not crystallize, washing workup
(sometimes followed by column chromatography) yielded pure
compounds.
In Vitro Antimalarial Activity. In vitro antimalarial
activity was measured using the [3H]-hypoxanthine incorpora-
tion assay with the Nigerian strain of P. falciparum as
previously described.27 Results were expressed as the concen-
tration resulting in 50% inhibition (IC50).
In vivo antimalarial activity was determined against P.
vinckei petteri (279BY) strain in female Swiss mice, according
to a modified version of the 4-day suppressive test of Peters
et al.28 The 50% efficient dose (ED50), which is the dose leading
to 50% parasite growth inhibition compared to the control
(treated with an equal volume of vehicle), was determined on
the day following the last treatment. All results are expressed
as mean ( SEM.
Acknowledgment. These studies were supported by
the European Community (QLK2-CT-2000-01166), Min-
iste`re de l’Education Nationale et de la Recherche
Scientifique (PAL+), and the UNDP/World Bank/WHO
special program for Research and Training in Tropical
Diseases. We thank. Dr Joseph Kappel for helping in
proofreading of the manuscript and Cedric Paniaga for
technical support.
Supporting Information Available: General methods,
experimental procedures details for synthesis, and analytical
data of all compounds. Assessment of biological activity: in
vitro and in vivo antimalarial activity and acute toxicity in
mouse. This material is available free of charge via the
References
(1) (a) Breman, J. G. The Ears of the Hippopotamus: Manifesta-
tions, Determinants, and Estimates of the Malaria Burden. Am.
J. Trop. Med. Hyg. 2001, 64, 1-11. (b) Guerin, P. J.; Olliaro, P.;
Nosten, F.; Druilhe, P.; Laxminarayan, R.; Binka, F.; Kilama,
W. L.; Ford, N.; White, N. J. Malaria: current status of control,
diagnosis, treatment, and a proposed agenda for research and
development. Lancet Infect. Dis. 2002, 2, 564-573.
(2) Hay, S. I.; Guerra, C. A.; Tatem, A. J.; Noor, A. M.; Snow, R. W.
The global distribution and population at risk of malaria: past,
present, and future. Lancet Infect. Dis. 2004, 4, 327-336.
(3) (a) Africa malaria report. WHO/33 25 April 2003. (b) Mount, A.
M.; Mwapasa, V.; Elliott, S. R.; Beeson, J. G.; Tadesse, E.; Lema,
V. M.; Molyneux, M. E.; Meshnick, S. R.; Rogerson, S. J.
Impairment of humoral immunity to Plasmodium falciparum
malaria in pregnancy by HIV infection. Lancet 2004, 363, 1860-
1870.
(4) (a) White, N. J. Antimalarial drug resistance. J. Clin. Invest.
2004, 113, 1084-1092. (b) Biagini, G. A.; O’Neill, P. M.; Nzila,
A.; Ward, S. A.; Bray, P. G. Antimalarial chemotherapy: young
guns or back to the future? Trends in Parasitology 2003, 19,
479-487.
(5) Haynes, R. K. Artemisinin and derivatives: the future for
malaria treatment? Curr. Opin. Infec. Dis. 2001, 14, 719-726.
(6) Borstnik, K.; Paik, I. H.; Posner, G. H. Malaria: new chemo-
therapeutic peroxide drugs. Mini-Rev. Med. Chem. 2002, 2, 573-
583.
(23) Portoghese, P. S.; Ronsisvalle, G.; Larson, D. L.; Yim, C. B.; Sayre
L. M.; Takemori, A. E. Opioid agonist and antagonist bivalent
ligands as receptor probes. Life Sci. 1982, 31, 1283-1286.
(24) Portoghese, P. S. Bivalent ligands in the development of selective
opioid receptor antagonists. In Trends in Medicinal Chemistry;
Mutschler, E., Winterfeldt, E., Eds.; VCH Verlagsgesellschaft:
Weinheim, 1987, pp 327-336.
(25) Shimazaki, N.; Shima, I.; Hemmi, K.; Tsurumi, Y.; Hashimoto,
M. Diketopiperazine derivatives,
a new series of platelet-
activating factor inhibitors. Chem. Pharm. Bull. 1987, 35, 3527-
3530.
(26) Thomson, A. D.; Frank, O.; Baker, H.; Leevy, C. M. Thiamine
propyl disulfide: absorption and utilization. Ann. Intern. Med.
1971, 74, 529-534.
(27) Ancelin, M. L.; Calas, M.; Bonhoure, A.; Herbute´, S.; Vial, H.
Potent inhibitors of Plasmodium phospholipid metabolism with
a broad spectrum of in vitro antimalarial activities. Antimicrob.
Agents Chemother. 2003, 47, 2590-7.
(28) Ancelin, M. L.; Calas, M.; Vidal-Sailhan, V.; Herbute´, S.,
Ringwald, P.; Vial, H. In vivo antimalarial activities of mono-
and bis quaternary ammonium salts interfering with Plasmo-
dium phospholipid metabolism. Antimicrob. Agents Chemother.
2003, 47, 2598-605.
JM0492608