Organometallics 2010, 29, 6527–6533 6527
DOI: 10.1021/om100887v
Dehydrocoupling of Organosilanes with a Dinuclear Nickel Hydride
Catalyst and Isolation of a Nickel Silyl Complex
Erin E. Smith, Guodong Du,† Phillip E. Fanwick, and Mahdi M. Abu-Omar*
Brown Laboratory, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette,
Indiana 47907, United States . †Current address: Department of Chemistry, University of North Dakota,
Grand Forks, ND 58202.
Received September 14, 2010
The dehydrocoupling of organosilanes is an efficient method for producing polysilanes. Although
this is traditionally done with group 4 metallocene catalysts, there are a few examples of nickel cata-
lysts that are effective for this reaction. We report the dehydrocoupling of phenylsilane and phenyl-
methylsilane with [(dippe)Ni(μ-H)]2 (1) (dippe=1,2-bis(diisopropylphosphino)ethane). As expected
from thermodynamic and steric evidence, the primary silane is more active toward dehydrocoupling
than the secondary silane. This catalyst compares favorably in required reaction conditions, molecular
weight of polysilane product, and selectivity for linear oligomers. Possible mechanisms for the
dehydrocoupling of silane are discussed. The hypothesized intermediate is a hydrido silyl nickel com-
plex. We report the isolation and single-crystal X-ray structure of a stable analogue of the proposed
catalytic intermediate, (dippe)Ni(SiCl3)Cl (2).
1. Introduction
of masked disilenes2 and electroreduction of dichlorosilanes.3
The most efficient alternative is dehydrocoupling of organo-
silanes with transition metal catalysts (eq 1). This method was
first studied by Harrod and co-workers using derivatives of
titanocene and zirconocene.4 Since then, much more work has
been done with group 4 catalyst systems.5 Other metal com-
plexes used for dehydrocoupling include groups 5-12 and the
lanthanide series.6-14
Polysilanes are of interest for their conductivity and optical
properties. Traditional industrial preparation of these
€
materials is done by the Wurtz-Fittig coupling reaction. This
method involves the coupling of diorganodihalosilanes using
molten sodium.1 The functional groups that are tolerated by
this method are limited, and despite high molecular weights,
the percent cyclic oligomers is also high. Other methods that
can be utilized to produce polysilanes include polymerization
*Corresponding author. E-mail: mabuomar@purdue.edu.
(1) (a) Corey, J. Y. The Chemistry of Organic Silicon Compounds;
Patai, S., Rappoport, Z., Eds.; John Wiley and Sons: New York, 1989;
pp 1-56. (b) West, R. The Chemistry of Organic Silicon Compounds; Patai, S.,
Rappoport, Z., Eds.; John Wiley and Sons: New York, 1989; pp 1207-1240.
(2) Sakamoto, K.; Obata, K.; Hirata, H.; Nakajima, M.; Sakurai, H.
J. Am. Chem. Soc. 1989, 111, 7641.
(3) Shono, T.; Kashimura, S.; Ishifune, M.; Nishida, R. J. Chem.
Soc., Chem. Commun. 1990, 1160.
(4) (a) Aitken, C.; Harrod, J. F.; Samuel, E. J. Organomet. Chem.
1985, 279, C11. (b) Aitken, C.; Harrod, J. F.; Samuel, E. J. Am. Chem. Soc.
1986, 108, 4059–4066. (c) Aitken, C.; Harrod, J. F.; Samuel, E. Can. J.
Chem. 1986, 64, 1677–1679. (d) Aitken, C.; Harrod, J. F.; Gill, U. S. Can. J.
Chem. 1987, 65, 1804–1809.
(5) (a) Mu, Y.; Aitken, C.; Cote, B.; Harrod, J. F. Can. J. Chem. 1991,
264, 164. (b) Campbell, W. H.; Hilty, T. K. Organometallics 1989, 8, 2615–
2618. (c) Woo, H. G.; Tilley, T. D. J. Am. Chem. Soc. 1989, 111, 3757–3758.
(d) Woo, H. G.; Tilley, T. D. J. Am. Chem. Soc. 1989, 111, 8043–8044. (e)
Woo, H. G.; Walzer, J. F.; Tilley, T. D. J. Am. Chem. Soc. 1992, 114, 7047–
7055. (f) Tilley, T. D. Acc. Chem. Res. 1993, 26, 22–29. (g) Bourg, S.; Corriu,
J. P.; Enders, M.; Moreau, J. J. E. Organometallics 1995, 14, 564–566.
(h) Peulecke, N.; Thomas, D.; Bauman, W.; Fischer, C.; Rosenthal, U. Tetra-
hedron Lett. 1997, 38, 6655–6656. (i) Hengge, E.; Gspaltl, P.; Pinter, E.
J. Organomet. Chem. 1996, 521, 145–155. (j) Corey, J. Y.; Zhu, X. H.; Bedard,
T. C.; Lange, L. D. Organometallics 1991, 10, 924–930. (k) Corey, J. Y.;
Huhmann, J. L.; Zhu, X. H. Organometallics 1993, 12, 1121–1130. (l) Wang,
Q.; Corey, J. Y. Can. J. Chem. 2000, 78, 1434–1440. (m) Banvetz, J. P.; Stein,
K. M.; Waymouth, R. M. Organometallics 1991, 10, 3430–3432. (n) Dioumaev,
V. K.; Harrod, J. F. J. Organomet. Chem. 1996, 521, 133–143. (o) Choi, N.;
Onozawa, S.; Sakakura, T.; Tanaka, M. Organometallics 1997, 16, 2765–2767.
(p) Obora, Y.; Tanaka, M. J. Organomet. Chem. 2000, 595, 1–11.
(6) (a) Corey, J. Y. Adv. Organomet. Chem. 2004, 51I, 1–52. (b) Gauvin,
F.; Harrod, J. F.; Woo, H. G. Adv. Organomet. Chem. 1998, 42, 363–405.
(c) Tilley, T. D. Comments Inorg. Chem. 1990, 10, 37–51.
(7) Aitken, C.; Barry, J. P.; Gauvin, F.; Harrod, J. F.; Malek, A.;
Rousseau, D. Organometallics 1989, 8, 1732–1736.
(8) Itazaki, M.; Ueda, K.; Nakazawa, H. Angew. Chem., Int. Ed.
2009, 48, 3313–3316.
(9) (a) Ojima, I.; Kogure, T.; Nagai, Y. J. Organomet. Chem. 1973, 55,
C7. (b) Chang, L. S.; Corey, J. Organometallics 1989, 8, 1885–1893.
(c) Rosenberg, L.; Davis, C.; Yao, J. J. Am. Chem. Soc. 2001, 123, 5120–
5121. (d) Rosenberg, L.; Kobus, D. J. Organomet. Chem. 2003, 685, 107–
112. (e) Fryzuk, M. D.; Rosenberg, L.; Rettig, S. J. Organometallics 1991,
10, 2537–2539. (f) Fryzuk, M. D.; Rosenberg, L.; Rettig, S. J. Inorg. Chim.
Acta 1994, 222, 345–364.
(10) Diversi, P..; Marchetti, F.; Ermini, V.; Metteoni, S.
J. Organomet. Chem. 2000, 593-594, 154–160.
(11) (a) Boudjouk, P.; Rajkumar, A. B.; Parker, W. L. J. Chem. Soc.,
Chem. Commun. 1991, 245–246. (b) Fontaine, F. G.; Kadkhodazadeh, T.;
Zargarian, D. J. Chem. Soc., Chem. Commun. 1998, 1253–1254. (c) Groux,
L. F.; Zargarian, D. Organometallics 2001, 20, 3811–3817. (d) Fontaine,
F. G.; Zargarian, D. Organometallics 2002, 21, 401–408. (e) Fontaine, F. G.;
Zargarian, D. J. Am. Chem. Soc. 2004, 126, 8786–8794.
(12) (a) Brown-Wensley, K. Organometallics 1987, 6, 1590–1591.
(b) Tanaka, M.; Kobayashi, T.; Hayashi, T.; Sakakura, T. Appl. Organomet.
Chem. 1988, 2, 91–92. (c) Chauhan, B.; Shimizu, T.; Tanaka, M. Chem. Lett.
1997, 785–786.
r
2010 American Chemical Society
Published on Web 11/10/2010
pubs.acs.org/Organometallics