There have been several successful approaches to DMJ
(1), most of which obtain their asymmetry from carbohy-
drates, chiral auxiliaries, or resolution methods.2,10 Because
of the flexibility it offered in terms of diastereo- and
enantiocontrol through ligand selection, we were interested
in the synthesis of iminosugars via an asymmetric amino-
hydroxylation/aza-Achmatowicz approach (Scheme 1).11
ates similar to 5a and 5c were unstable and hydrolyzed to
3-hydroxypyridines under aza-Achmatowicz conditions
(Scheme 1).11 In contrast, Zhou13b and Altenbach14 found
that a sulfonamide protecting group was compatible with the
aza-Achmatowicz reaction (mCPBA). Nevertheless, we
choose to carry forward a N-Cbz protecting group because
of the potential for step reduction and ease of purification.
In addition, we found that the preparation of furyl sulfona-
mide 5b via the Sharpless asymmetric aminohydroxylation
(AA)15 reaction of vinylfuran proved problematic.16
Scheme 1
Drawing from our successful experience with the Sharpless
asymmetric dihydroxylation of vinylfuran and subsequent
diastereoselective conversion to D- and L-sugars,17 we
envisioned the synthesis of the manno-iminosugar 1 being
synthesized via an analogous route (Scheme 1). Herein we
report our application of the asymmetric aminohydroxylation
to vinylfuran and the subsequent highly diastereoselective
conversion into two iminosugars, deoxymannojirmycin (DMJ)
1 and deoxygulonojirimycin (DGJ) 3.
Enantiomerically enriched N-Cbz-protected amino alcohols
6 and 9 were obtained by application of the Sharpless
asymmetric aminohydroxylation (AA) chemistry to vinyl-
furan 7 (Scheme 2).18 Key to this approach is a simple in
By employing the aza-Achmatowicz reaction, â-hydroxy-
furfurylamine 512 can be converted into various piperidines,
including iminosugar 1 (DMJ).10o,p,13 In his studies of the
aza-Achmatowicz reaction, Ciufolini observed that carbam-
Scheme 2
(8) For the first synthesis of DGJ, see: (a) Leontein, K.; Lindberg, B.;
Lonngren, J. Acta Chem. Scand. B 1982, 36, 515-518. (b) For more recent
syntheses, see: Le Merrer, Y.; Poitout, L.; Depezay, J.-C.; Dosbaa, I.;
Geoffroy, S. Foglietti, M.-J. Bioorg. Med. Chem. 1997, 5, 519-533. (c)
Liao, L.-X.; Wang, Z.-M.; Zhou, W.-S. Tetrahedron: Asymmetry 1999,
10, 3649-57.
(9) Tyms, A. S.; Berrie, E. M.; Ryder, T. A.; Nash, R. J.; Hegarty, M.
P.; Taylor, T. L.; Mobberly, M. A.; Davis, J. M.; Bell, E. A.; Jeffries, D.
J.; Taylor-Robinson, D.; Fellows, L. E. Lancet 1987, 1025.
(10) For syntheses of DNJ/DMJ before 1994 and a concise approach to
DNJ/DMJ from dicarbonyl sugars, see: (a) Baxter, E. W.; Reitz, A. B. J.
Org. Chem. 1994, 59, 3175. For syntheses of DMJ after 1994, see: (b)
Asano, K.; Hakogi, T.; Iwama, S.; Katsumura, S. Chem. Commun.1999,
41-42. (c) Campbell, J. A.; Lee, W. K.; Rapoport, H. J. Org. Chem. 1995,
60, 4602-4616. (d) Cook, G. R.; Beholz, L. G.; Stille, J. R. J. Org. Chem.
1994, 59, 3575-3584. (e) Dondoni A.; Perrone, D. J. Org. Chem. 1995,
60, 47-49. (f) Hudlicky, T.; Rouden, J.; Luna, H.; Allen, S. J. Am. Chem.
Soc. 1994, 116, 5099-5107. (g) Johnson, C. R.; Golebiowski, A.; Schoffers,
E.; Sundram, H.; Braun, M. P. Synlett 1995, 313-314. (h) Lee, S. G.; Yoon,
Y. J.; Shin, S. C.; Lee, B. Y.; Cho, S. D.; Kim, S. K.; Lee, J. H. Heterocycles
1997, 45, 701-706. (i) Lemerrer, Y.; Poitout, L.; Depezay, J. C.; Dosbaa,
I.; Geoffroy, S.; Foglietti, M. J. Bioorg. Med. Chem. 1997, 5, 519-533. (j)
Liao, L.-X.; Wang, Z.-M.; Zhang, H.-X.; Zhou, W.-S. Tetrahedron:
Asymmetry 1999, 10, 3649-3657. (k) Meyers, A. I.; Price, D. A.; Andres,
C. J. Synlett 1997, 533. (l) Meyers, A. I.; Andres, C. J.; Resek, J. E.;
Woodall, C. C.; McLaughlin, M. A.; Lee, P. H.; Price, D. A. Tetrahedron
1999, 55, 8931-8952. (m) Park, K. H.; Yoon, Y. J.; Lee, S. G. J. Chem.
Soc., Perkin Trans. 1 1994, 2621-2623. (n) Wu, X.-D.; Khim, S.-K.; Zhang,
X.; Cederstrom, E. M.; Mariano, P. S. J. Org. Chem. 1998, 63, 841-859.
(o) Xu, Y.-M.; Zhou, W.-S. Tetrahedron Lett. 1996, 37, 1461-1462. (p)
Xu, Y.-M.; Zhou, W.-S. J. Chem. Soc., Perkin Trans. 1 1997, 741-746.
(q) Asano, K.; Hakogi, T.; Iwama, S. Katsumura, S. Chem Commun. 1999,
41-42.
situ preparation of vinylfuran. Treatment of an ether solution
of vinylfuran with the sodium salt of N-chlorobenzylcar-
bamate and a 4% OsO4/5% (DHQ)2PHAL admixture leads
to a good yield of regioisomers (84%). The regioisomers 6
and 9 (1:2 ratio) were easily purified by selective TBS
protection of the primary alcohol followed by silica gel
chromatography. The highest enantiomeric excess of 6 was
obtained with the (DHQ)2PHAL ligand system, which gives
5a in a ∼21% yield from furfural 8 (>86% ee). The
enantiomer of 5a was also prepared by this sequence (24%,
>86% ee) with the use of (DHQD)2PHAL ligand.19 This
(14) Altenbach, H.-J.; Wischnat, R. Tetrahedron Lett. 1995, 36, 4983.
(15) Li, G. G.; Angert, H. H.; Sharpless, K. B. Angew. Chem., Int. Ed.
Engl. 1996, 35, 2813-2817.
(16) Bushey, M. L.; Haukaas, M. H.; O’Doherty, G. A. J. Org. Chem.
1999, 64, 2984.
(11) For an excellent review of the subject, see: Ciufolini, M. A.;
Hermann, C. Y. W.; Dong, Q.; Shimizu, T.; Swaminathan, S.; Xi, N. Synlett
1998, 105.
(12) Previously, Ciufolini/Wong and Zhou have shown that furans similar
to 5 can be produced via resolution strategies: (a) Drueckhammer, D. G.;
Barbas, C. F., III; Nozaki, K.; Wong, C.-H.; Wood, C. Y.; Ciufolini, M. A.
J. Org. Chem. 1988, 53, 1607. (b) Xu, Y.-M.; Zhou, W.-S. Tetrahedron
Lett. 1996, 37, 1461.
(13) (a) Xi, N.; Ciufolini, M. A. Tetrahedron Lett. 1995, 36, 6595. (b)
Yang, C.-F.; Xu, Y.-M.; Liao, L.-X.; Zhou, W.-S. Tetrahedron Lett. 1998,
39, 9227.
(17) Harris, J. M.; Keranen, M. D.; O’Doherty, G. A., J. Org. Chem.
1999, 64, 2982.
(18) This constitutes an improved procedure as to our previously
published procedure (ref 16).
(19) At a smaller scale, the level of enantioinduction has been as high
as 94%, as determined by Mosher ester analysis. (a) Sullivan, G. R.; Dale,
J. A.; Mosher, H. S. J. Org. Chem. 1973, 38, 2143. (b) Yamaguchi, S.;
Yasuhara, F.; Kabuto, K. T. Tetrahedron 1976, 32, 1363.
402
Org. Lett., Vol. 3, No. 3, 2001