10.1002/adsc.201800731
Advanced Synthesis & Catalysis
We are grateful to Prof. Shuji Akai (Osaka University) for his
kind and helpful discussions. We also thank Prof. Masayuki
Inoue (The University of Tokyo), Prof. Takeo Kawabata (Kyoto
University), Prof. Tomohiko Ohwada (The University of Tokyo),
Dr. Mitsuaki Ohtani (ITSUU Laboratory), and Dr. Kin-ichi
Tadano (ITSUU Laboratory) for helpful discussions.
Movassaghi, B. Zheng, J. Am. Chem. Soc. 1997, 119,
8572–8573; c) J. Wang, W. Huang, Z. Zhang, X. Xiang,
R. Liu, X. Zhou, J. Org. Chem. 2009, 74, 3299–3304;
d) H. R. Diéguez, A. López, V. Domingo, J. F. Arteaga,
J. A. Dobado, M. M. Herrador, J. F. Quílez del Moral,
A. F. Barrero, J. Am. Chem. Soc. 2010, 132, 254–259;
e) J. E. Milne, T. Storz, J. T. Colyer, O. R. Thiel, M. D.
Seran, R. D. Larsen, J. A. Murry, J. Org. Chem. 2011,
76, 9519–9524; f) M. Dobmeier, J. M. Herrmann, D.
Lenoir, B. König, Beilstein J. Org. Chem. 2012, 8,
330–336; g) J.-L. Huang, X.-J. Dai, C.-J. Li, Eur. J.
Org. Chem. 2013, 6496–6500; h) S. Sawadjoon, A.
Lundstedt, J. S. M. Samec, ACS Catal. 2013, 3, 635–
642; i) X.-J. Dai, C.-J. Li, J. Am. Chem. Soc. 2016, 138,
5433–5440; j) Z. Yang, R. K. Kumar, P. Liao, Z. Liu,
X. Li, X. Bi, Chem. Commun. 2016, 52, 5936–5939; k)
J. O. Bauer, S. Chakraborty, D. Milstein, ACS Catal.
2017, 7, 4462–4466.
References
[1] a) E. Emer, R. Sinisi, M. G. Capdevila, D. Petruzziello,
F. De Vincentiis, P. G. Cozzi, Eur. J. Org. Chem. 2011,
647–666; b) B. Sundararaju, M. Achard, C. Bruneau,
Chem. Soc. Rev. 2012, 41, 4467–4483; c) R. Kumar, E.
V. Van der Eycken, Chem. Soc. Rev. 2013, 42, 1121–
1146; d) M. Dryzhakov, E. Richmond, J. Moran,
Synthesis 2016, 48, 935–959.
[2] a) D. H. R. Barton, S. W. McCombie, J. Chem. Soc.
Perkin Trans. 1 1975, 1574–1585; b) W. Hartwig,
Tetrahedron 1983, 39, 2609–2645; c); S. W.
McCombie in Comprehensive Organic Synthesis,
Vol. 8 (Eds.: B. Trost, I. Fleming), Pergamon, Oxford,
1991, pp. 811–833; d) I. T. Harrison, S. Harrison in
Compendium of Organic Synthetic Methods, Vol. 1,
Wiley, Hoboken, New Jersey, 2006, pp. 357–378; e) S.
W. McCombie, W. B. Motherwell, M. J. Tozer in
Organic Reactions, Vol. 77 (Ed.: S. E. Denmark),
Wiley, Hoboken, New Jersey, 2012, pp. 161–591.
[7] For reviews, see; a) C. F. de Graauw, J. A. Peters, H.
van Bekkum, J. Huskens, Synthesis 1994, 1007–1017;
b) J. S. Cha, Org. Process Res. Dev. 2006, 10, 1032–
1053.
[8] For reviews, see: a) R. Noyori, S. Hashiguchi, Acc.
Chem. Res. 1997, 30, 97–102; b) S. Gladiali, E.
Alberico, Chem. Soc. Rev. 2006, 35, 226–236; c) T.
Ikariya, A. J. Blacker, Acc. Chem. Res. 2007, 40, 1300–
1308; d) Y.-Y. Li, S.-L. Yu, W.-Y. Shen, J.-X. Gao,
Acc. Chem. Res. 2015, 48, 2587–2598; e) D. Wang, D.
Astruc, Chem. Rev. 2015, 115, 6621–6686.
[3] For recent examples of two-step reduction of alcohols,
see: a) R. M. Lopez, D. S. Hays, G. C. Fu, J. Am. Chem.
Soc. 1997, 119, 6949–6950; b) L. Zhang, M. Koreeda,
J. Am. Chem. Soc. 2004, 126, 13190–13191; c) D. A.
Spiegel, K. B. Wiberg, L. N. Schacherer, M. R.
Medeiros, J. L. Wood, J. Am. Chem. Soc. 2005, 127,
12513–12515; d) P. A. Jordan, S. T. Miller, Angew.
Chem. Int. Ed. 2012, 51, 2907–2911; e) H. D. N. Cox,
G. Lalic, Angew. Chem. Int. Ed. 2014, 53, 752–756.
[9] For selected examples of Lewis acid-catalyzed
dehydrative etherification of two different alcohols,
see: a) G. V. M. Sharma, A. K. Mahalingam, J. Org.
Chem. 1999, 64, 8943–8944; b) V. V. Namboodiri, R.
S. Varma, Tetrahedron Lett. 2002, 43, 4593–4595; c) B.
D. Sherry, A. T. Radosevich, F. D. Toste, J. Am. Chem.
Soc. 2003, 125, 6076–6077; d) Y. Liu, R. Hua, H.-B.
Sun, X. Qiu, Organometallics 2005, 24, 2819–2821; e)
A. Corma, M. Renz, Angew. Chem. Int. Ed. 2007, 46,
298–300; f) A. B. Cuenca, G. Mancha, G. Asensio, M.
Medio-Simón, Chem. Eur. J. 2008, 14, 1518–1523; g) J,
Kim, D.-H. Lee, N. Kalutharage, C. S. Yi, ACS Catal.
2014, 4, 3881–3885; h) J. Li, X. Zhang, H. Shen, Q.
Liu, J. Pan, W. Hu, Y. Xiong, C. Chen, Adv. Synth.
Catal. 2015, 357, 3115–3120.
[4] For a review on the reduction of alcohols, see: J. M.
Herrmann, B. König, Eur. J. Org. Chem. 2013, 7017–
7027.
[5] For selected examples of the direct reduction of
alcohols using hydrosilanes, see: a) V. Gevorgyan, J.-X.
Liu, M. Rubin, S. Benson, Y. Yamamoto, Tetrahedron
Lett. 1999, 40, 8919–8922; b) T. Miyai, M. Ueba, A.
Baba, Synlett 1999, 182–184; c) V. Gevorgyan, M.
Rubin, S. Benson, J.-X. Liu, Y. Yamamoto, J. Org.
Chem. 2000, 65, 6179–6186; d) M. Yasuda, Y. Onishi,
M. Ueba, T. Miyai, A. Baba, J. Org. Chem. 2001, 66,
7741–7744; e) Y. Nishibayashi, A. Shinoda, Y. Miyake,
H. Matsuzawa, M. Sato, Angew. Chem. Int. Ed. 2006,
45, 4835–4839; f) L. Y. Chan, J. S. K. Lim, S. Kim,
Synlett 2011, 2862–2866; g) G. G. K. S. N. Kumar, K.
K. Laali, Org. Biomol. Chem. 2012, 10, 7347–7355; h)
V. J. Meyer, M. Niggemann, Chem.–Eur. J. 2012, 18,
4687–4691; i) M. Egi, T. Kawai, M. Umemura, S. Akai,
J. Org. Chem. 2012, 77, 7092–7097; j) N. Drosos, B.
Morandi, Angew. Chem. Int. Ed. 2015, 54, 8814–8818.
[10] It is important to note that 3a is the intermediate
leading to 2a, which is clearly demonstrated in Scheme
2.
[11] Further optimization of reaction conditions revealed
that LiOTf/PhCF3 system was superior than LiPF6/DCE
for the direct reduction of allylic alcohols with
electron-rich aryl groups.
[12] The reaction of allylic alcohol 6a’ showed the same
regioselectivity and yield as those of 6a.
[6] For selected examples of the direct reduction of
alcohols using other hydride sources, see: a) T.
Funabiki, Y. Yamazaki, K. Tarama, J. Chem. Soc.,
Chem. Commun. 1978, 63–65; b) A. G. Myers, M.
5
This article is protected by copyright. All rights reserved.