Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 5
COMMUNICATION
Journal Name
aldehydes 3b-f to deliver the products 2b-f, though with Conclusions
slightly less yield and er. Interestingly, the reaction worked In summary,
straightforward acceDssOI:t1o0.10p3y9r/rCo9lOoBin0d12o4l3oE-
a
very smoothly with iodo substituted quinazolinone-aldehyde quinazolinone scaffold has been developed using NHC catalysis
3g and delivered the expected product 2g in good yield (62%) and applied in the synthesis of deoxy-cruciferane alkaloids.
and er (81:19). Additionally, the developed protocol worked Novel NHC-catalyzed intramolecular stereoselective [3 + 2]
well on the substrate 3h having electron-withdrawing nitro cycloaddition of enal with quinazolinone was utilized as the
substituent although in diminished yield but with a slight key-step. The developed protocol provides
a
single
improvement in the enantiomeric ratio. The absolute diastereomer of cyclized products with a good enantiomeric
configuration of deoxy-cruciferane 2a was unambiguously ratio. The scope of the protocol was demonstrated by
assigned on the basis of X-ray crystallographic analysis (Figure synthesizing
varyingly
substituted
deoxy-cruciferane
2, see SI) and extrapolated to the deoxy-cruciferane analogues analogues. Currently, we are working on the improvement and
2b-h.
application of the NHC-catalyzed intramolecular annulation
strategy developed herein to access other bioactive molecules
and natural products.
Conflicts of interest
There are no conflicts to declare.
Acknowledgments
M.M.A. thanks CSIR-New Delhi for the research fellowship.
S.B.M. gratefully acknowledges generous financial support
from DST-SERB, New Delhi.
Fig. 2 X-ray crystallographic structure of 2a
A plausible mechanism of the developed IHCI protocol is
depicted in figure 3. The homoenolate intermediate [I] is
formed by the reaction of an in situ generated NHC catalyst
with the aldehyde 3. The homoenolate anion attacks the imine
moiety of the quinazolinone scaffold. Probably, the hydrogen
bonding between the imine nitrogen and enol facilitates this
reaction. Further cyclization proceeds via intermediates [II]
and [III] to construct the second pentacyclic ring, thus
furnishing the desired deoxy-cruciferanes 2 and regenerating
the NHC catalyst for the next catalytic cycle. The intermediate
[I] displaying the hydrogen bonding interaction reasonably
explains the observed enantio- and diastereoselctivity.
Additionally, the formation of the cis-5-5 ring system is
favourable, which justifies the complete diastereoselection.
Further studies on the mechanism are essential.
Notes and references
1
For selected recent reviews on NHC catalysis, see: (a) D.
Enders, O. Niemeier and A. Henseler, Chem. Rev. 2007, 107,
5606−5655. (b) J. Douglas, G. Churchill and A. D. Smith,
Synthesis 2012, 44, 2295−2309. (c) S. De Sarkar, A. Biswas, R.
C. Samanta and A. Studer, Chem. Eur. J. 2013, 19,
4664−4678. (d) M. Fevre, J. Pinaud, Y. Gnanou, J. Vignolle
and D. Taton, Chem. Soc. Rev. 2013, 42, 2142−2172. (e) S. J.
Ryan, L. Candish and D. W. Lupton, Chem. Soc. Rev. 2013, 42,
4906−4917. (f) M. N. Hopkinson, C. Richter, M. Schedler and
F. Glorius, Nature 2014, 510, 485−496. (g) D. M. Flanigan, F.
Romanov-Michailidis, N. A. White and T. Rovis, Chem. Rev.
2015, 115, 9307−9387. (h) R. S. Menon, A. T. Biju and V. Nair,
Chem. Soc. Rev. 2015, 44, 5040−5052. (i) R. S. Menon, A. T.
Biju and V. Nair, Beilstein J. Org. Chem. 2016, 12, 444−461. (j)
C. Zhang, J. F. Hooper and D. W. Lupton, ACS Catal. 2017, 7,
2583−2596. (k) M. Zhao, Y.-T. Zhang, J. Chen and L. Zhou,
Asian J. Org. Chem. 2018, 7, 54−69. (l) X.-Y. Chen, Q. Liu, P.
Chauhan and D. Enders, Angew. Chem., Int. Ed. 2018, 57,
3862-3873. (m) K. J. R. Murauski, A. A. Jaworski, and K. A.
Scheidt, Chem. Soc. Rev. 2018, 47, 1773-1782. (n) X. Bugaut,
and F. Glorius, Chem. Soc. Rev. 2012, 41, 3511-3522.
O
H
O
N
R2
H
R2
N
N
N
N
N
Mes
N
R1
O
NHC*
R1
N
O
2
3
2
For selected reviews, (a) S. Díez-Gonzalez, N. Marion and S.
P. Nolan, Chem. Rev. 2009, 109, 3612-3676. (b) E. Peris,
Chem. Rev. 2018, 19, 9988-10031. (c) M. Iglesias and L. A.
Oro, Chem. Soc. Rev. 2018, 47, 2772-2808.
base
Mes
N
H
N
N
NHC*
N
N
O
Mes
R2
H
O
N
3
4
J. Izquierdo, G. E. Hutson, D. T. Cohen and K. A. Scheidt,
Angew. Chem., Int. Ed. 2012, 51, 11686−11698.
N
H
BF4
R2
[III]
R1
N
N
O
Selected examples (a) M. He and J. W. Bode, Org. Lett. 2005,
7, 3131−3134. (b) M. Rommel, T. Fukuzumi and J. W. Bode, J.
Am. Chem. Soc. 2008, 130, 17266−17267. (c) D. E. A. Raup, B.
Cardinal-David, D. Holte and K. A. Scheidt, Nat. Chem. 2010,
2, 766-771. (d) X. D. Zhao, D. A. DiRocco and T. Rovis, J. Am.
Chem. Soc. 2011, 133, 12466-12469. (e) H. Lv, B. Tiwari, J.
Mo, C. Xing and Y. R. Chi, Org. Lett. 2012, 14, 5412-5415.
Selected examples (a) J. Struble and J. W. Bode, Tetrahedron
2009, 65, 4957-4967. (b) C. R. Sinu, D. V. M. Padmaja, U. P.
Ranjini, K. C. Seetha Lakshmi, E. Suresh and V. Nair, Org. Lett.
O
R1
[I]
Homoenolate
O
H
NHC*
NH
H
R2
N
R1
[II]
O
5
Fig. 3 A plausible mechanism of the IHCI protocol
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins