1328 Organometallics, Vol. 26, No. 6, 2007
Hill et al.
Table 2. Structural Data (Å) for Ruthenacyclopentadienes
and -trienes10,12-15
complex
a, Å
b, Å
c, Å
ra
9
2.178
2.187
2.121
2.10
2.129
2.093
2.114
2.088
2.109
2.118
1.942
1.367
1.371
1.36
1.459
1.066
11
1.46
1.066
1.036
1.067
1.090
1.019
Figure 2. Molecular geometry of 9 in the crystal (50% displace-
ment ellipsoids, phosphine phenyl groups omitted, remaining phenyl
groups simplified, hydrogen atoms omitted, one of two crystallo-
graphically independent molecules shown). Selected bond lengths
(Å) and angles (deg): Ru1-P1 ) 2.388(6), Ru1-P2 ) 2.393(6),
Ru1-C1 ) 2.00(2), Ru1-C2 ) 1.99(2), Ru1-C5 ) 2.19(2), Ru1-
C8 ) 2.18(2), O1-C1 ) 1.09(2), O2-C2 ) 1.10(2), C3-C4 )
1.19(3), C3-C31 ) 1.42(3), C4-C5 ) 1.43(3), C5-C6 ) 1.37-
(3), C6-C7 ) 1.46(3), C7-C8 ) 1.37(3), C8-C9 ) 1.42(3), C9-
C10 ) 1.14(3); P1-Ru1-P2 ) 174.4(3), C1-Ru1-C2 ) 99.5(12),
C1-Ru1-C8 ) 87.3(11), C2-Ru1-C5 ) 96.4(11), C5-Ru1-
C8 ) 76.8(10), Ru1-C1-O1 ) 173(3), Ru1-C2-O2 ) 176(3),
C4-C3-C3 ) 178(3), C3-C4-C5 ) 172(3), Ru1-C5-C4 )
116(2), Ru1-C5-C6 ) 115(2), C4-C5-C6 ) 129(2), C5-C6-
C7 ) 116(2), C5-C6-C61 ) 118(2), C7-C6-C61 ) 126(2),
C6-C7-C8 ) 118(2), C6-C7-C71 ) 122(2), C8-C7-C71 )
120(2), Ru1-C8-C7 ) 114(2), Ru1-C8-C9 ) 123(2), C7-C8-
C9 ) 123(2), C8-C9-C10 ) 174(3), C9-C10-C101 ) 174(3).
1.38
12
benzo
13
benzo
14
1.351
1.422
1.359
1.400
1.347
1.352
1.403
1.437
1.472
1.471
1.377
10
a r ) 2c/(b + b′) provides a singular indication of the degree of multiple
bond localization.
CtCPh),14 which has been obtained from the reaction of [Ru3-
(NCMe)2(CO)10] with diphenylbutadiyne, the amine ligand
arising from reduction of Me3NO required for the in situ
synthesis of [Ru3(NCMe)2(CO)10] from [Ru3(CO)12]. The
complex 11 was only obtained in 1.5% yield (3 mg), precluding
conjecture as to its mechanistic significance, with the major
products being tri- and tetrametallic diyne complexes, in addition
to a bimetallic ruthenacyclopentadiene and a diruthenatropolone.
Each of these feature alkyne coupling with regiochemistries
distinct from that required for the formation of either 9 or 11.
crystallographically and shown to be the ruthenacyclopentadiene
(“ruthenole”) complex [Ru(κ2-CRdCPhCPhdCR)(CO)2(PPh3)2]
(9, R ) CtCPh; Scheme 1). The results of this study are
summarized in Figure 2, which depicts one of two crystallo-
graphically independent but similar molecules of the metalla-
cycle in the asymmetric unit. The geometric parameters of the
“Ru(CO)2(PPh3)2” fragment are unremarkable for this metal-
ligand combination in a C2V octahedral arrangement. Bond
distances around the RuC4 ring establish that 9 is best described
as a ruthenacyclopentadiene, with an essentially localized Ru-
CR, CRdCâ, and Câ-Câ′ bonding pattern. A ruthenacycle with
the same connectivity, the complex [RuBr(κ2-C4Ph4)(η-C5H5)]
(10), has been alternatively described, with some justification,
as a ruthencyclopentatriene.13 The dichotomy arises from the
number of valence electrons required by the ruthenium to attain
an 18-electron configuration. Table 2 summarizes structural
parameters for the mononuclear ruthenacyclopentadienes
9-14,13-16 including Singleton’s ruthenacyclopentatriene 10.13
Although not strictly mononuclear, the complex {Ru{κ2-C4(CO2-
Et)4}(CO)3}2 (14) is included, since the metallacyclopentadiene
is not intimately involved in bridging the two metals; rather,
the dimer is held together by weak coordination of the ester
substituents.16 This is in contrast to the large number of bi- and
polynuclear ruthenacyclopentadiene compounds wherein the
prevalent “flyover” arrangement of the metallacyclopentadiene
(“metallaole”) supports a metal-metal bond.17
(17) (a) Inagaki, A.; Takao, T.; Moriya, M.; Suzuki, H. Organometallics
2003, 22, 2196. (b) Inagaki, A.; Musaev, D. G.; Toshifumi, T.; Suzuki, H.;
Morokuma, K. Organometallics 2003, 22, 1718. (c) Bruce, M. I.; Pyke, S.
M.; Zaitseva, N. N.; Skelton, B. W.; White, A. H. HelV. Chim. Acta 2001,
84, 3197. (d) Suzuki, H.; Inagaki, A.; Matsubara, K.; Takemori, T. Pure
Appl. Chem. 2001, 73, 315. (e) Matsuzaka, H.; Ichikawa, K.; Ishioka, T.;
Sato, H.; Okubo, T.; Ishii, T.; Yamashita, M.; Kondo, M.; Kitagawa, S. J.
Organomet. Chem. 2000, 596, 121. (f) Inagaki, A.; Takenori, T.; Tanaka,
M.; Suzuki, H. Angew. Chem., Int. Ed. 2000, 39, 404. (g) Zdanovich, V. I.;
Lagunovoa, V. Yu.; Dolgushin, F. M.; Yanovsky, A. I.; Ezernitskaya, M.
G.; Petrovskii, P. V.; Koridze, A. A. Russ. Chem. Bull. 1998, 47, 1789. (h)
Koridze, A. A.; Zdanovich, V. I.; Lagunova, V. Yu.; Ezernitskaya, M. G.;
Petrovskii, P. V.; Dolgushin, F. M.; Yanovsky, A. I. Russ. Chem. Bull.
1998, 47, 988. (i) Bruce, M. I.; Zaitseva, N. N.; Skelton, B. W.; White, A.
H. Russ. Chem. Bull. 1998, 47, 983. (j) Bruce, M. I.; Hinchliffe, J. R.;
Humphrey, P. A.; Surynt, R. J.; Skelton, B. W.; White, A. H. J. Organomet.
Chem. 1998, 552, 109. (k) Bruce, M. I.; Zaitseva, N. N.; Skelton, B. W.;
White, A. H. J. Organomet. Chem. 1997, 536/537, 93. (l) Tunik, S. P.;
Grachova, E. V.; Denisov, V. R.; Starova, G. L.; Nikol’skii, A. B.;
Dolgushin, F. M.; Yanovsky, A. I.; Struchkov, Yu. T. J. Organomet. Chem.
1997, 536/537, 339. (m) Blake, A. J.; Haggitt, J. L.; Johnson, B. F. G.;
Parsons, S. J. Chem. Soc., Dalton Trans. 1997, 991. (n) Blenkiron, P.;
Enright, G. D.; Carty, A. J. Chem. Commun. 1997, 483. (o) Koridze, A.
A.; Zdanovich, V. I.; Andrievskaya, N. V.; Siromakhova, Yu.; Petrovskii,
P. V.; Ezernitskaya, M. G.; Dolgushin, F. M.; Yanovskii, A. I.; Struchkov,
Yu. T. IzV. Akad. Nauk, Ser. Khim. 1996, 1261; (p) Nishio, M.; Matsuzaka,
H.; Mizobe, Y.; Tanase, T.; Hidai, M. Organometallics 1994, 13, 4214.
(q) Suzuki, H.; Omori, H.; Lee, D.-H.; Yoshida, Y.; Fukushima, M.; Tanaka,
M.; Moro-oka, Y. Organometallics 1994, 13, 1129. (r) Koridze, A. A.;
Yanovsky, A. I.; Struchkov, Yu. T. J. Organomet. Chem. 1992, 441, 277.
(s) Boroni, E.; Costa, M.; Predieri, G.; Sappa, E.; Tiripicchio, A. J. Chem.
Soc., Dalton Trans. 1992, 2585. (s) Bruce, M. I.; Humphrey, P. A.;
Miyamae, H.; Skelton, B. W.; White, A. H. J. Organomet. Chem. 1992,
429, 187. (t) Osella, D.; Gobetto, R.; Milone, L.; Zanello, P.; Mangani, S.
Organometallics 1990, 9, 2167. (u) Campion, B. K.; Heyn, R. H.; Tilley,
T. D. Organometallics 1990, 9, 1106. (v) Omori, H.; Suzuki, H.; Morooka,
Y. Organometallics 1989, 8, 1576. (w) Han, S. H.; Geoffroy, G. L.;
Rheingold, A. L. Organometallics 1987, 6, 2380. (x) Busetti, V.; Granozzi,
G.; Aime, S.; Gobetto, R.; Osella, D. Organometallics 1984, 3, 1510. (y)
Bruce, M. I.; Matisons, J. G.; Skelton, B. W.; White, A. H. J. Organomet.
Chem. 1983, 251, 249. (z) Noda, I.; Yasuda, H.; Nakamura, A. J.
Organomet. Chem. 1983, 250, 447; (aa) Aime, S.; Deeming, A. J. J. Chem.
Soc., Dalton Trans. 1981, 828. (ab) Low, P. J.; Udachin, K. A.; Enright,
G. D.; Carty, A. J. J. Organomet. Chem. 1999, 578, 103.
Structural data for 9, contextualized by Table 2, clearly
indicate that the ruthenacyclopentadiene description is apt,
consistent with the 16-valence-electron nature of the “Ru(CO)2-
(PPh3)2” fragment. Most relevant to the structure of 9 is the
complex [Ru(κ2-CRdCPhCPhdCR)(CO)3(NMe3)] (11, R )
(13) Albers, M. O.; De Waal, D. J. A.; Liles, D. C.; Robinson, D. J.;
Singleton, E.; Wiege, M. B. J. Chem. Soc., Chem. Commun. 1986, 1680-
1682.
(14) Bruce, M. I.; Zaitseva, N. N.; Skelton, B. W.; White, A. H. Inorg.
Chim. Acta 1996, 250, 129.
(15) Burns, R. M.; Hubbard, J. L. J. Am. Chem. Soc. 1994, 116, 9514.
(16) Lindner, E.; Jansen, R.-M.; Mayer, H. A.; Hiller, W.; Fawzi, R.
Organometallics 1989, 8, 2355.