‡ Crystal data for 1: [(C42H26N4O6CuRe2)+PF62·CH2Cl2], M = 1348.55,
triclinic, space group P1 (no. 2), a = 10.806(1), b = 17.408(2), c =
MLCT absorption band at higher energy than that found in the
related Re(CO)3(bpy)(C·CPh) precursor, which absorbs at ca.
420 nm in dichloromethane, is supportive of a lower-lying
dp(Re) orbital in 1 and 2, resulted from the weaker p-donating
ability of the acetylide ligand upon p-coordination to the d10
metal ions.
¯
25.199(2) Å, a = 81.432(7), b = 82.688(7), g = 88.139(7)°, V = 4648(1)
Å3, Z = 4, Dc = 1.927 g cm23, m(Mo-Ka) = 58.74 cm21, F(000) = 2576,
T
= 301 K. One crystallographic asymmetric unit consists of two
independent formula units. Convergence for 1111 variable parameters by
least-squares refinement on F with w = 4Fo2/s2(Fo2), where s2(Fo2) =
[s2(I) + (0.036Fo2)2] for 10761 reflections with I > 3s(I) was reached at
R = 0.032 and wR = 0.045 with a goodness-of-fit of 1.46. The F atoms in
both PF6 counter ions were refined isotropically.
Excitation of 1 and 2 both in the solid state and in fluid
solutions resulted in orange luminescence,† with emission
lifetimes of 0.18 and 0.16 ms in dichloromethane solutions,
For 2: [(C42H26N4O6AgRe2)+PF62·(CH3)2CO], M = 1366.02, triclinic,
3
respectively, which are attributed to the MLCT phosphores-
¯
space group P1 (no. 2), a = 11.485(1), b = 13.368(1), c = 17.259(1) Å, a
cence. Similar to the absorption studies, the close resemblance
of the MLCT emission energies of 1 and 2 is suggestive of the
similar s- and p-donating properties of the acetylide ligand
upon coordination to CuI and AgI. It is also interesting that both
1 and 2 emit at higher energies than their precursor complex, i.e.
the emission energies in CH2Cl2 follow the order: 1 (590 nm)
= 102.048(6), b = 107.155(6), g = 103.476(6)°, V = 2549.8(10) Å3, Z =
2, Dc = 1.931 g cm23, m(Mo-Ka) = 56.63 cm21, F(000) = 1304, T = 301
K. Convergence for 575 variable parameters by least-squares refinement on
F with w = 4Fo2/s2(Fo2), where s2(Fo2) = [s2(I) + (0.024Fo2)2] for 5957
reflections with I > 3s(I) was reached at R = 0.026 and wR = 0.034 with
a goodness-of-fit of 1.33.
2 (600 nm)
>
Re(CO)3(bpy)(C·CPh) (654 nm).6c The
crystallographic files in .cif format.
observation of a blue shift in emission energies on going from
Re(CO)3(bpy)(C·CPh) to 1 and 2 is in line with the assignment
3
*
of a MLCT [dp(Re) ? p (bpy)] origin and disfavours the
1 (a) T. Weidmann, V. Weinrich, B. Wagner, C. Robl and W. Beck, Chem.
Ber., 1991, 124, 1363; (b) H. Werner, P. Bachmann, M. Laubender and
O. Gevert, Eur. J. Inorg. Chem., 1998, 1217; (c) V. Varga, J. Hiller, U.
Thewalt, M. Polasek and K. Mach, J. Organomet. Chem., 1998, 553, 15;
(d) B. E. Woodworth, P. S. White and J. L. Templeton, J. Am. Chem. Soc.,
1998, 120, 9028.
2 (a) O. M. Abu Salah and M. I. Bruce, J. Chem. Soc., Dalton Trans., 1974,
2302; (b) H. Lang, K. Kohler and S. Blau, Coord. Chem. Rev., 1995, 143,
113; (c) Y. Zhu, O. Clot, M. O. Wolf and G. P. A. Yap, J. Am. Chem. Soc.,
1998, 120, 1812; (d) C. Muller, J. A. Whiteford and P. J. Stang, J. Am.
Chem. Soc., 1998, 120, 9827; (e) S. Mihan, K. Sunkel and W. Beck,
Chem. Eur. J., 1999, 5, 745; (f) V. W. W. Yam, W. K. M. Fung and K. K.
Cheung, Angew. Chem., Int. Ed. Engl., 1996, 35, 1100.
assignment of a 3MLCT [dp(Re) ? p (C·CPh)] origin. Such a
*
trend can be rationalized by the fact that the acetylide ligand
would become a poorer electron donor upon coordination to CuI
or AgI, and as a result, the energy of the Re dp orbitals would be
lowered, leading to a higher 3MLCT emission energy.
V. W.-W. Y. acknowledges financial support from The
University of Hong Kong, S. H.-F. C. the receipt of a
postgraduate studentship, administered by The University of
Hong Kong, and K. M.-C. W. the receipt of a research
associateship supported by the Vice-Chancellor’s Development
Fund of The University of Hong Kong.
3 J. Manna, K. D. John and M. D. Hopkins, Adv. Organomet. Chem., 1995,
38, 79.
Notes and references
4 (a) V. W. W. Yam, S. W. K. Choi and K. K. Cheung, Organometallics,
1996, 15, 1734; (b) V. W. W. Yam, W. K. M. Fung and K. K. Cheung,
Chem. Commun., 1997, 963; (c) V. W. W. Yam, W. K. M. Fung, K. M. C.
Wong, V. C. Y. Lau and K. K. Cheung, Chem. Commun., 1998, 777;
(d) V. W. W. Yam, K. K. W. Lo and K. M. C. Wong, J. Organomet.
Chem., 1999, 578, 3.
† 1: 1H NMR (300 MHz, acetone-d6, 298 K, relative to SiMe4): d 6.80 (d,
2H, J 7.5 Hz, aryl H meta to ethynyl group), 7.15 (m, 3H, aryl H ortho and
para to ethynyl group), 7.70 (t, 2H, J 7.2 Hz, bpy H), 8.30 (t, 2H, J 7.8 Hz,
bpy H), 8.60 (d, 2H, J 8.2 Hz, bpy H), 9.15 (d, 2H, J 5.3 Hz, bpy H). IR
(Nujol mull, cm21): 2029, 1999, 1932, 1911 n(C·O, C·C). Positive ESI-
MS: ion cluster at m/z 1119 {M}+. UV–VIS [l/nm
(e/dm3 mol21 cm21)]: CH2Cl2, 246(28160), 288(29000), 396(6050). Emis-
sion [l/nm (to/ms)]: CH2Cl2 (298 K), 590 (0.18); solid (298 K), 550 (0.35);
solid (77 K), 540; EtOH–MeOH glass (4 :1 v/v) (77 K), 555. Found: C,
39.07, H, 2.07, N, 4.29. Calc. for 1·0.5CH2Cl2: C, 39.17; H, 1.94, N, 4.31%.
2: 1H NMR (300 MHz, acetone-d6, 298 K, relative to SiMe4): d 6.80 (d, 2H,
J 7.2 Hz, aryl H meta to ethynyl group), 7.10 (m, 3H, aryl H ortho and para
to ethynyl group), 7.60 (t, 2H, J 6.5 Hz, bpy H), 8.20 (t, 2H, J 7.4 Hz, bpy
H), 8.55 (d, 2H, J 8.1 Hz, bpy H), 9.0 (d, 2H, J 5.5 Hz, bpy H). IR (Nujol
mull, cm21): 2033, 2006, 1921, 1888 n(C·O, C·C). Positive ESI-MS: ion
cluster at m/z 1163 {M}+. UV–VIS [l/nm (e/dm3 mol21 cm21)]: CH2Cl2,
250(26890), 292(28240), 396(5930). Emission [l/nm (to/ms)]: CH2Cl2 (298
K), 600 (0.16); solid (298 K), 535 ( < 0.1); solid (77 K), 533; EtOH–MeOH
glass (4:1 v/v) (77 K), 540. Found: C, 38.53, H, 1.99, N, 4.28. Calc. for 2:
C, 38.44, H, 1.87, N, 4.26%.
5
(a) J. Heidrich, M. Steimann, M. Appel and W. Beck, Organometallics,
1990, 9, 1296; (b) U. H. F. Bunz, Angew. Chem., Int. Ed. Engl., 1996, 35,
969; (c) S. B. Falloon, W. Weng, A. M. Arif and J. A. Gladysz,
Organometallics, 1997, 16, 2008.
6 (a) V. W. W. Yam, V. C. Y. Lau and K. K. Cheung, Organometallics,
1995, 14, 2749; (b) V. W. W. Yam, V. C. Y. Lau and K. K. Cheung,
Organometallics, 1996, 15, 1740; (c) K. M. C. Wong, Ph.D Thesis, The
University of Hong Kong, 1998; (d) V. W. W. Yam, S. H. F. Chong and
K. K. Cheung, Chem. Commun., 1998, 2121.
7 (a) M. S. Wrighton and D. L. Morse, J. Am. Chem. Soc., 1974, 96, 998;
(b) G. Tapolsky, R. Duesing and T. J. Meyer, Inorg. Chem., 1990, 29,
2285; (c) J. K. Hino, L. D. Ciana, W. J. Dressick and B. P. Sullivan, Inorg.
Chem., 1992, 31, 1072.
Communication 9/02273B
1014
Chem. Commun., 1999, 1013–1014