330
E. Abraham, J. Suffert
LETTER
Bennett, M. S.; Champness, J. N.; Summers, W. C.;
The use of THF as the solvent allowed a rapid elimination/
metallation reaction of 2-bromopropene with nBuLi and a
rapid quenching of the lithio species by H2O. Use of ether
as the solvent for the metallation does not give any traces
of propynyllithium. Pd(PPh3)2Cl2 was found to be the best
source of palladium. The choice of the amine is crucial for
the reaction to proceed cleanly. For aldehydes (entry 9–
11) only Et3N is suitable to give good yields of products,
while iPr2NH gave mainly decomposition. Surprisingly
the o-bromobenzylic alcohol did not give a single trace of
the corresponding propynylated product (entry 7). This
lack of reactivity has been observed in only one case on
such an electron rich aromatic ring. In contrast, the iodide
(entry 8) furnished the expected compound with an excel-
lent 98% yield. Only 1.55 equiv of (Z/E)-1-bromopropene
are necessary for the completion of the reaction while the
use of propyne gas needs a large excess of the gas.
Sanderson, M. R.; Herdewijn, P. J. Med. Chem. 1998, 41,
4343. (l) Pschirer, N. G.; Bunz, U. H. F. Tetrahedron Lett.
1999, 40, 2481. (m) Froehler, B. C.; Wadwani, S.; Terhorst,
T. J.; Gerrard, S. R. Tetrahedron Lett. 1992, 33, 5307.
(n) Sakamoto, T.; An-naka, M.; Kondo, Y.; Yamanaka, H.
Chem. Pharm. Bull. 1986, 34, 2754. (o) Al-Hassan, M. I. J.
Organomet. Chem. 1990, 395, 227. (p) Bleckmann, W.;
Hanack, M. Chem. Ber. 1984, 117, 3021.
(2) Jauch, J.; Schmalzing, D.; Schurig, V.; Emberger, R.; Hopp,
R.; Köpsel, M.; Silberzahn, W.; Werkhoff, P. Angew. Chem.,
Int. Ed. Engl. 1989, 28, 1022.
(3) (a) Suffert, J.; Toussaint, D. J. Org. Chem. 1995, 60, 3550.
(b) Toussaint, D.; Suffert, J. Organic Synthesis 1999, 76,
214.
(4) (a) Fritsch, P. Liebigs Ann. Chem. 1894, 272, 319.
(b) Buttenberg, W. P. Liebigs Ann. Chem. 1894, 272, 324.
(c) Wiechell, H. Liebigs Ann. Chem. 1894, 272, 337.
(5) Sonogashira, K.; Toha, Y.; Hagihara, N. Tetrahedron Lett.
1975, 4467.
In summary, we have found a practical alternative to effi-
ciently replace propyne gas by 2-bromopropene for an
easy introduction of a propynyl group on aromatic and vi-
nylic halogenated compounds. We are currently applying
this methodology for the synthesis of unsaturated polycy-
clic substrates.
(6) Representative Procedure (Table, Entry 2):
[2,2-Dimethyl-5-(2-pent-1-en-3-ynyl-phenyl)-[1,3]dioxolan
-4-ylethynyl]-trimethyl-silane: A solution of nBuLi (1.8 mL,
1.54 M in hexane, 2.73 mmol, 2.2 equiv) was slowly added
to a cooled solution of (Z/E)-1-bromopropene (0.233 g, 1.92
mmol, 1.55 equiv) in anhydrous THF (2.5 mL) under argon.
This solution was stirred at -78 °C during 2 hours. H2O (0.05
mL, 2.73 mmol, 2.2 equiv) was then added in one portion at
-78 °C via syringe and the reaction mixture warmed to 0 °C.
The halogenated substrate (0.470 g, 1.24 mmol, 1 equiv)
dissolved in THF (2 mL) was added via syringe to the
propyne solution, followed by Pd(Ph3P)2Cl2 (43.5 mg, 0.062
mmol, 0.05 equiv), CuI (23.6 mg, 0.124 mmol, 0.1 equiv)
and iPr2NH (2.2 mL). The temperature was raised to 20 °C
and the reaction followed by TLC. Then the reaction was
quenched with 20 mL of a saturated NH4Cl in water and
extracted with the appropriate solvent (3 10 mL). The
organic phase was dried over Na2SO4, decolored by
charcoal, filtered and the solvent was removed under reduce
pressure. The crude propynylated product was purified by
flash chromatography (1:99, ether–hexane) on silica gel to
give the desired compound (0.418 g 98%). 1H NMR (200
MHz, CDCl3) 0.21 (s, 9 H, Si(CH3)3); 1.61 (s, 3 H,); 1.62
(s, 3 H); 2.01 (d, 3 H, J = 2.4 Hz); 4.38 (d, 1 H, J = 7.9 Hz);
5.38 (d, 1 H, J = 7.9 Hz); 6.05 (dq, 1 H, Jtrans = 16 Hz, 5J =
2.4 Hz); 7.25–7.38 (m, 2 H, arom. H); 7.47 (d, 1 H, Jtrans = 16
Hz); 7.43–7.57 (m, 2 H, arom. H). 13C NMR (50 MHz,
CDCl3): 0.44 [Si(CH3)3]; 4.5, 26.3, 26.8, 73.1, 79.2, 79.4,
88.5, 93.3, 100.8, 110.4, 111.5, 125.6, 126.2, 128.4, 128.5,
134.0, 135.6, 137.2. IR (CHCl3, cm–1) 3668 (w); 3026 (m,
CH); 2991 (m, CH); 2962 (s); 2918 (m); 2217 (m); 2177 (m,
C C); 1600 (m); 1453 (m); 1383 (w); 1255 (w); 1210 (w);
1163 (w); 1100 (w); 1052 (w); 990 (w); 956 (m).
Acknowledgement
The author thank professor D. Uguen for stimulating discussions
concerning the Sonogashira reaction.
References
(1) (a) Bleckmann, W.; Hanack, M. Chem. Ber. 1984, 117,
3021. (b) Froehler, B. C.; Wadwani, S.; Terhorst, T. J.;
Gerrard, S. R. Tetrahedron Lett. 1992, 33, 5307.
(c) Tanaka, H.; Baba, M.; Hayakawa, H.; Sakamaki, T.;
Miyasaka, T.; Ubasawa, M.; Takashima, H.; Sekiya, K.;
Nitta, I. J. Med. Chem. 1991, 34, 349. (d) Makra, F.;
Rohloff, J. C.; Muehldorf, A. V.; Link, J. O. Tetrahedron
Lett. 1995, 36, 6815. (e) Awano, H.; Shuto, S.; Miyashita,
T.; Ashida, N.; Machida, H. Arch. Pharm. 1996, 329, 66.
(f) Blough, B. E.; Abraham, P.; Lewin, A. H.; Kuhar, M. J.;
Boja, J. W.; Carroll, F. I. J. Med. Chem. 1996, 39, 4027.
(g) Kuyper, L. F.; Baccanari, D. P.; Jones, M. L.; Hunter, R.
N.; Tansik, R. L.; Joyner, S. S.; Boytos, C. M.; Rudolph, S.
K.; Knick, V.; Wilson, H. R.; Caddell, J. M.; Friedman, H.
S.; Comley, J. C. W.; Stables, J. N. J. Med. Chem. 1996, 39,
892. (h) Cushman, M.; He, H.-M.; Katzenellenbogen, J. A.;
Varma, R. K.; Hamel, E.; Lin, C. M.; Ram, S.; Sachdeva, Y.
P. J. Med. Chem. 1997, 40, 2323. (i) Kloppenburg, L.;
Song, D.; Bunz, U. H. F. J. Am. Chem. Soc. 1998, 120,
7973. (j) Xu, L.; Lewis, I. R.; Davidsen, S. K.; Summers, J.
B. Tetrahedron Lett. 1998, 39, 5159. (k) Ostrowski, T.;
Wroblowski, B.; Busson, R.; Rozenski, J.; De Clercq, E.;
Synlett 2002, No. 2, 328–330 ISSN 0936-5214 © Thieme Stuttgart · New York