â-D-Galactosyl Ceramide Methylene Isostere
J . ORG. CHEM., VOL. 64, NO. 15, 1999 5563
Hz, PhCH2), 4.64 and 4.94 (2 d, 2 H, J ) 12.0 Hz, PhCH2),
4.68 and 4.75 (2 d, 2 H, J ) 12.0 Hz, PhCH2), 7.20-7.40 (m,
20 H); 13C NMR δ 14.3, 18.8, 22.7, 28.1, 29.2, 29.4, 30.0, 56.3,
65.8, 69.1, 72.3, 73.5, 73.7, 75.5, 76.7, 79.1, 79.4, 84.8, 86.2,
127.6, 127.8, 127.9, 128.2, 128.4, 137.9, 138.3, 138.7, 156.5.
Oxa zolid in on es 20a a n d 20b. The mixture of epimers 18
(0.13 g, 0.14 mmol) was dissolved in a solution of HCl in
dioxane (4.8 M, 3.0 mL) and water (0.50 mL). The solution
was stirred at room temperature for 14 h and then concen-
trated. To the residue dissolved in anhydrous THF (2.0 mL)
was added N,N′-carbonyldiimidazole (0.03 g, 0.21 mmol) at 0
°C; then the resulting mixture was stirred for 45 min at room
(3′S,4′R)-N-(ter t-Bu toxyca r bon yla m in o)n on a d ec-5′-yn -
4′-olyl 2,3,4,6-Tetr a-O-ben zyl-â-C-D-galactopyr an oside (a n -
ti-18). To a cold (-78 °C) stirred solution of 19 (0.40 g, 0.44
mmol) in anhydrous THF (2.5 mL) was added L-selectride
(lithium tri-sec-butylborohydride, 0.87 mL, 0.87 mmol, of a 1
M solution in THF). After 30 min at this temperature, the
reaction was quenched with MeOH, allowed to warm to room
temperature, and partitioned between Et2O and saturated
aqueous NaCl. The combined organic phases were dried and
concentrated. Chromatography on silica gel of the crude
residue with cyclohexane/AcOEt (3:1) containing Et3N (1‰)
gave a n ti-18 (0.36 g, 90%, dr g 95% by 1H NMR analysis):
[R]D -13.2 (c 0.5, CHCl3); IR cm-1 2400; 1H NMR δ 0.82-0.93
(m, 3 H, CH3), 1.20-1.70 (m, 20 H), 1.43 (s, 9 H), 1.40-1.52
(m, 2 H, 2 H-8′), 1.54-1.70 (m, 3 H), 1.88-2.00 (m, 1 H, H-2′b),
2.15 (dt, 2 H, J ) 1.0, 4.5, Hz, 2 H-7′), 3.06 (d, 1 H, J ) 6.4
Hz, OH), 3.22 (ddd, 1 H, J 1,1′a ) J 1,2 ) 9.0, J 1,1′b ) 2.6 Hz, H-1),
3.47-3.68 (m, 5 H), 3.68-3.80 (m, 1 H, H-3′), 3.97 (dd, 1 H,
J 3,4 ) 2.5, J 4,5 ) 0.5 Hz, H-4), 4.41 and 4.47 (2 d, 2 H, J ) 12.0
Hz, PhCH2), 4.38-4.44 (m, 1 H, H-4′), 4.63 and 4.94 (2 d, 2 H,
J ) 11.5 Hz, PhCH2), 4.64 and 4.94 (2 d, 2 H, J ) 12.0 Hz,
PhCH2), 4.68 and 4.75 (2 d, 2 H, J ) 12.0 Hz, PhCH2), 4.70-
4.78 (m, 1 H, NH), 7.20-7.40 (m, 20 H); 13C NMR δ 14.1, 18.7,
22.7, 28.4, 28.9, 29.4, 29.7, 31.9, 55.8, 69.1, 73.5, 73.6, 74.5,
75.5, 77.2, 77.4, 77.7, 79.1, 79.4, 79.7, 84.8, 87.3, 127.5, 127.6,
127.8, 127.9, 128.1, 128.2, 128.4, 137.9, 138.3, 138.7, 156.9;
MALDI-TOF MS: 941.3 (M+ + Na), 957.5 (M+ + K). Anal.
Calcd for C58H79NO8: C, 75.86; H, 8.67; N, 1.52. Found: C,
76.09; H, 8.51; N, 1.59.
1
temperature and concentrated. The H NMR spectrum of the
crude residue revealed a mixture of 20a and 20b in ca. 70:30
ratio. Chromatography on silica gel of this mixture with
cyclohexane-AcOEt (2:1) afforded first 20a (0.07 g, 63%) as a
syrup and then 20b (0.03 g, 27%) contaminated by a small
amount of 20a .
20a : [R]D -43.1 (c 0.9, CHCl3); 1H NMR (DMSO-d6, 120 °C)
δ 0.82-0.92 (m, 3 H, CH3), 1.30 (s, 20 H), 1.40-1.53 (m, 2 H),
1.54-1.95 (m, 4 H), 2.20 (dt, 2 H, J 4′,7′ ) 2.0, J 7′,8′ ) 7.0 Hz, 2
H-7′), 3.24 (ddd, 1 H, J 1,1′a ) J 1,2 ) 8.0, J 1,1′b ) 2.8 Hz, H-1),
3.50-3.78 (m, 5 H), 3.68 (dd, 1 H, J 2,3 ) 9.5, J 3,4 ) 2.8 Hz,
H-3), 4.40 (dd, 1 H, J 4,5 ) 0.5 Hz, H-4), 4.47 and 4.55 (2 d, 2
H, J ) 12.0 Hz, PhCH2), 4.56 and 4.84 (2 d, 2 H, J ) 11.9 Hz,
PhCH2), 4.63 and 4.81 (2 d, 2 H, J ) 11.0 Hz, PhCH2), 4.66
and 4.78 (2 d, 2 H, J ) 11.5 Hz, PhCH2), 4.72 (dt, 1 H, J 3′,4′
)
6.0 Hz, H-4′), 7.20-7.40 (m, 21 H); 13C NMR δ 14.1, 18.7, 22.6,
29.1, 29.2, 29.6, 31.9, 32.9, 61.2, 69.2, 73.1, 73.3, 74.2, 75.3,
75.5, 76.5, 77.0, 78.6, 80.4, 84.6, 89.3, 89.0, 128.1, 128.3, 128.4,
128.5, 137.4, 138.0, 158.1; MALDI-TOF MS 867.5 (M+ + Na),
883.2 (M+ + K). Anal. Calcd for C54H69NO7: C, 76.83; H, 8.59;
N, 1.65. Found: C, 76.69; H, 8.70; N, 1.62.
(3′S,4′R)-3′-Am in on on a d ec-5′-yn -4′-olyl 2,3,4,6-Tetr a -O-
ben zyl-â-C-D-ga la ctop yr a n osid e (21). A solution of HCl in
dioxane (4.8 M, 2.0 mL) and water (0.5 mL) was added at room
temperature to a n ti-18 (0.30 g, 0.33 mmol). The mixture was
stirred overnight and then concentrated. The residue was
dissolved in saturated aqueous NaHCO3 and then extracted
with CH2Cl2, dried, and concentrated. Chromatography on
silica gel of the crude residue with CH2Cl2/MeOH/NH4OH (95:
5:1) gave 21 (0.24 g, 90%): 1H NMR δ 0.80-0.92 (m, 3 H, CH3),
1.25 (s, 22 H), 1.40-1.50 (m, 2 H), 1.50-1.70 (m, 2 H, 2 H-1′),
2.00-2.20 (m, 2 H, 2 H-2′), 2.75 (m, 1 H, OH), 3.15-3.27 (m,
20b: 1H NMR (DMSO-d6, 120 °C): δ 0.82-0.92 (m, 3 H,
CH3), 1.20-1.30 (s, 20 H), 1.40-1.53 (m, 2 H), 1.54-1.95 (m,
4 H), 2.19 (dt, 2 H, J 4′,7′ ) 2.0, J 7′,8′ ) 7.0 Hz, 2 H-7′), 3.25
(ddd, 1 H, J 1,1′a ) J 1,2 ) 8.0, J 1,1′b ) 2.8 Hz, H-1), 3.50-3.69
(m, 5 H), 3.68 (dd, 1 H, J 2,3 ) 9.5, J 3,4 ) 2.8, Hz, H-3), 4.42
(dd, 1 H, J 4,5 ) 0.5 Hz, H-4), 4.48 and 4.54 (2 d, 2 H, J ) 12.0
Hz, PhCH2), 4.57 and 4.84 (2 d, 2 H, J ) 11.9 Hz, PhCH2),
4.64 and 4.81 (2 d, 2 H, J ) 11.0 Hz, PhCH2), 4.66 and 4.78 (2
d, 2 H, J ) 11.5 Hz, PhCH2), 5.21 (dt, 1 H, J 3′,4′ ) 8.0 Hz,
H-4′), 7.08 (s, 1 H, NH), 7.20-7.40 (m, 20 H).
1 H, H-1), 3.46-3.70 (m, 6 H), 3.97 (d, 1 H, J 3,4 ) 2.5, J 4,5
)
0.5, H-4), 4.38-4.44 (m, 1 H, H-4′), 4.41 and 4.48 (2 d, 2 H, J
) 12.0 Hz, PhCH2), 4.62 and 4.93 (2 d, 2 H, J ) 11.5 Hz,
PhCH2), 4.68 and 4.75 (2 d, 2 H, J ) 12.0 Hz, PhCH2), 4.68
and 4.93 (2 d, 2 H, J ) 12.0 Hz, PhCH2), 7.20-7.40 (m, 20 H);
13C NMR δ 14.1, 18.7, 22.7, 28.8, 29.3, 29.7, 30.8, 31.9, 55.0,
55.7, 65.9, 69.1, 73.7, 74.4, 75.5, 76.2, 76.6, 78.9, 79.0, 79.5,
84.9, 86.7, 127.5, 127.8, 127.9, 128.2, 128.4, 137.9, 138.4, 138.7.
(3′S,4′R)-3′-Am in o-(E)-n on adec-5′-en -4′-olyl 2,3,4,6-Tetr a-
O-ben zyl-â-C-D-ga la ctop yr a n osid e (22). To a solution of 21
(0.20 g, 0.24 mmol) in anhydrous dimethoxyetane (5.0 mL) was
added LiAlH4 (0.90 g, 24.4 mmol). The mixture was heated to
85 °C, stirred at this temperature for 3 h, then cooled to room
temperature, and treated with aqueous KOH (4 M, 5.0 mL).
The white suspension was filtered through a pad of Celite and
concentrated. Chromatography on silica gel of the crude
residue with CH2Cl2/MeOH/NH4OH (94:5:1) gave 22 (0.13 g,
3′S-N-(ter t-Bu toxyca r bon yla m in o)n on a d ec-5′-yn -4′-on -
yl 2,3,4,6-Tet r a -O-b en zyl-â-C-D-ga la ct op yr a n osid e (19).
To a cold (-78 °C) solution of oxalyl chloride (0.10 g, 0.82
mmol) in anhydrous CH2Cl2 (2.0 mL) was added a solution of
DMSO (0.13 g, 1.63 mmol) in anhydrous CH2Cl2 (1.0 mL). The
solution was stirred at -78 °C for 30 min, and then a solution
of alcohol 18 (0.50 g, 0.54 mmol) in anhydrous CH2Cl2 (2.0 mL)
was added. After the reaction solution had been stirred at this
temperature for 1 h, N,N′-diisopropylethylamine (0.42 g, 3.27
mmol) was added. The mixture was allowed to warm to 0 °C
over 10 min and treated with cold (0 °C) aqueous HCl (1 M,
2.0 mL). The solution was extracted with CH2Cl2, and the
combined organic phases were washed with aqueous phos-
phate buffer (pH 7), dried, and concentrated. Chromatography
on silica gel of the crude residue with cyclohexane/AcOEt (4:
1) containing Et3N (1‰) gave the ketone 19 (0.45 g, 90%) as a
syrup: [R]D +8.4 (c 0.6, CHCl3); IR (NaCl) cm-1 2220, 1654;
1H NMR (DMSO-d6, 120 °C) δ 0.82-0.94 (m, 3 H, CH3), 1.25
(s, 20 H), 1.39 (s, 9 H), 1.40-1.60 (m, 2 H), 1.65-1.80 (m, 1
H), 1.80-1.94 (m, 2 H), 2.12-2.20 (m, 1 H, H-1′), 2.30-2.40
(m, 2 H, 2 H-7′ ), 3.24 (ddd, 1 H, J 1,1′a ) J 1,2 ) 9.0, J 1,1′b ) 2.8
1
65%) as a syrup: [R]D +12.4 (c 0.9, MeOH); H NMR δ 0.84-
0.94 (m, 3 H, CH3), 1.28 (s, 22 H), 1.40-1.64 (m, 3 H), 1.82-
2.05 (m, 3 H), 2.79 (ddd, 1 H, J 2′a,3′ ) 8.3, J 2′b,3′ ) 4.6, J 3′,4′
)
4.1 Hz, H-3′), 3.21 (ddd, 1 H, J 1,1′a ) J 1,2 ) 9.2, J 1,1′b ) 2.1 Hz,
H-1), 3.44-3.72 (m, 5 H), 3.95 (dd, 1 H, J 3,4 ) 2.5, J 4,5 ) 0.5
Hz, H-4), 3.98 (dd, 1 H, J 4′,5′ ) 6.4 Hz, H-4′), 4.42 and 4.51 (2
d, 2 H, J ) 11.9 Hz, PhCH2), 4.63 and 4.94 (2 d, 2 H, J ) 11.5
Hz, PhCH2), 4.64 and 4.96 (2 d, 2 H, J ) 10.7 Hz, PhCH2),
4.68 and 4.76 (2 d, 2 H, J ) 11.5 Hz, PhCH2), 5.39 (dd, 1 H,
J 5′,6′ ) 15.1 Hz, H-5′), 5.69 (ddd, 1 H, J 6′,7′a ) J 6′,7′b ) 6.8 Hz,
H-6′), 7.20-7.40 (m, 20 H); 13C NMR δ 14.1, 22.7, 29.3, 29.4,
29.5, 29.7, 31.9, 32.4, 55.7, 69.1, 73.5, 73.7, 74.4, 75.4, 76.6,
77.4, 78.9, 79.6, 84.9, 127.5, 127.7, 127.9, 128.1, 128.2, 128.4,
134.1, 137.9, 138.4, 138.6. Anal. Calcd for C53H73NO6: C, 77.85;
H, 8.69, N, 1.71. Found: C, 77.79; H, 8.70; N, 1.70.
Hz, H-1), 3.50-3.64 (m, 4 H), 3.68 (dd, 1 H, J 2,3 ) 9.5, J 3,4
2.8 Hz, H-3), 3.92-4.00 (m, 1 H, H-3′), 4.04 (dd, 1 H, J 4,5
)
)
0.5 Hz, H-4), 4.47 and 4.53 (2 d, 2 H, J ) 12.0 Hz, PhCH2),
4.56 and 4.84 (2 d, 2 H, J ) 11.5 Hz, PhCH2), 4.63 and 4.81 (2
d, 2 H, J ) 11.0 Hz, PhCH2), 4.66 and 4.78 (2 d, 2 H, J ) 11.5
Hz, PhCH2), 6.58 (s, 1 H, NH), 7.20-7.40 (m, 20 H); 13C NMR
δ 14.1, 19.0, 22.6, 27.6, 28.3, 28.9, 29.3, 29.4, 29.6, 31.9, 61.0,
62.1, 68.8, 72.2, 73.5, 74.4, 75.5, 78.7, 79.1, 79.6, 84.7, 97.8,
127.5, 127.6, 128.2, 128.4, 137.9, 138.1, 138.2, 155.4, 187.0.
Anal. Calcd for C58H77NO8: C, 76.03; H, 8.47; N, 1.53. Found:
C, 76.21; H, 8.29; N, 1.58.
(3′S,4′R)-3′-N-(p en t a d eca n oyla m in o)-(E)-n on a d ec-5′-
en -4′-olyl 2,3,4,6-Tetr a -O-ben zyl-â-C-D-ga la ctop yr a n osid e
(2b). To a solution of 22 (0.10 g, 0.12 mmol) in anhydrous THF