Organic Process Research & Development 2009, 13, 1088–1093
Pilot-Plant Preparation of an rvꢀ3 Integrin Antagonist. Part 3. Process Research
and Development of a Diisopropylcarbodiimide and Catalytic 1-Hydroxybenzotriazole
Peptide Coupling†
Jerry D. Clark,‡,* D. Keith Anderson,‡ David V. Banaszak,⊥ Derek B. Brown,⊥ Ann M. Czyzewski,⊥ Albert D. Edeny,⊥
Puneh S. Forouzi,⊥ Donald J. Gallagher,⊥ V. H. Iskos,⊥ H. Peter Kleine,‡ Carl M. Knable,⊥ Melissa K. Lantz,⊥
Mark A. Lapack,⊥ Christine M. V. Moore,⊥ Frank W. Muellner,⊥ James B. Murphy,⊥ Carlos A. Orihuela,⊥ Mark A. Pietz,⊥
Thomas E. Rogers,⊥ Peter G. Ruminski,‡ Harish K. Santhanam,⊥ Tobin C. Schilke,⊥ Ajit S. Shah,⊥ Ahmad Y. Sheikh,⊥
Gerald A. Weisenburger,§ and Bruce E. Wise⊥
Pfizer Global Research and DeVelopment, St. Louis Laboratories, 700 Chesterfield Parkway West, Chesterfield, Missouri 63017,
and Pfizer Global Research and DeVelopment, Eastern Point Road, Groton, Connecticut 06340
Abstract:
Studies directed toward the process research, development,
and scale-up preparation of the potential rvꢀ3 integrin
antagonist 1 are described. A convergent approach is
detailed wherein tetrahydropyrimidine hydroxybenzoic
acid 2 is linked to the ꢀ-amino acid ester 3 via a
diisoproylcarbodiimide, catalytic HOBt coupling reac-
tion. Saponification of the resulting ethyl ester, isolation
of the corresponding zwitterion, H3PO4 salt formation,
crystallization, and acetonitrile-to-acetone exchange
give rise to 1 as a crystalline monohydrate in 67%
overall yield from 4.
Results and Discussion
Preparation of 1 began by converting 44 to 3. Initial
laboratory-scale experiments facilitated the desired deprotection
through the use of 4 N HCl in dioxane, but upon further
investigation, use of this reagent on scale gave rise to 3 that
Introduction
The integrin Rvꢀ3 plays an essential role in angiogen-
esis, the process by which new blood vessels form from
pre-existing blood vessels.1 Angiogenesis is required for
tumor growth, and therefore, antagonists of Rvꢀ3 are being
studied for the treatment of cancer. In a program directed
toward the discovery of such antagonist, an improved
synthesis of the monohydrate, monophosphoric acid salt
1 was required.2
(1) (a) Liu, Z.; Wang, F.; Chen, X. Drug DeV. Res. 2008, 69, 329. (b)
Roberto, R.; Angelo, V.; Domenico, R.; Francesco, D. R.; Francesca,
M.; Franco, D. Haematologica 2002, 87, 836. (c) Ruminski, P. G.;
Rogers, T. E.; Rico, J. E.; Nickols, G. A.; Westlin, W. F.; Engleman,
V. W.; Settle, S. L.; Keene, J. L.; Freeman, S. K.; Carron, C. P.; Meyer,
D. M. 218th National Meeting of the American Chemical Society,
New Orleans, 1999; Book of Abstracts; American Chemical Society:
Washington, DC, 1999. (d) Ruminski, P. G.; Rogers, T. E.; Rico, J. E.;
Nickols, G. A.; Engleman, V. W.; Settle, S. L.; Keene, J. L.; Freeman,
S. K.; Carron, C. P.; Meyer, D. M. 217th National Meeting of the
American Chemical Society, Anaheim, CA, 1999; Book of Abstracts;
American Chemical Society: Washington, DC, 1999. (e) Flynn, D. L.;
Abood, N.; Bovy, P.; Garland, R.; Hockerman, S.; Lindmark, R. J.;
Schretzman, L.; Rico, J.; Rogers, T. 210th National Meeting of the
American Chemical Society, Chicago, IL, 1995; Book of Abstracts;
American Chemical Society: Washington, DC, 1995.
(2) (a) Collins, J. T.; Devadas, B.; Lu, H.-F.; Malecha, J. W.; Miyashiro,
J. M.; Nagarajan, S.; Rico, J. G.; Rogers, T. E. U.S. Patent 6,100,423,
2000. CAS 1098091-47-4. (b) Malecha, J. W.; Fraher, T. P. U.S. Patent
6,172,256, 2001. CAS 253866-45-5. (c) Colson, P.-J.; Awasthi, A. K.;
Nagarajan, S. R. U.S. Patent 6,414,180, 2002; CAS 290826-60-7.
(3) (a) Clark, J. D.; Collins, J. T.; Kleine, H. P.; Weisenburger, G. A.;
Anderson, D. K. Org. Process Res. DeV. 2004, 8 (4), 571. (b) Clark,
J. D.; Weisenburger, G. A.; Anderson, D. K.; Colson, P.-J.; Edney,
A. D.; Gallagher, D. J.; Kleine, H. P.; Knable, C. M.; Lantz, M. K.;
Moore, C. M. V.; Murphy, J. B.; Rogers, T. E.; Ruminski, P. G.; Shah,
A. S.; Storer, N.; Wise, B. E. Org. Process Res. DeV. 2004, 8 (1), 51.
(c) Clark, J. D.; Anderson, D. K.; Collins, J. T.; Colson, P.-J.; Edney,
A. D.; Gallagher, D. J.; Kleine, H. P.; Knable, C. M.; Lantz, M. K.;
Moore, C. M. V.; Ruminski, P. G.; Weisenburger, G. A.; Wise, B. E.
National Organic Chemistry Symposium, Indiana University, Bloom-
ington, IN, 2003. (d) Clark, J. D. Gordon Research Conference,
Organic Reactions and Processes, Bristol, RI, July 23, 2002.
Envisioned was a convergent synthesis wherein hydroxy-
benzoic acid 2 would be linked to the ꢀ-amino acid amide
3. As part of a series of reports,3 herein we describe the
chemical process research, development, and large-scale
preparation of 1.
† Manuscript dedicated to Professor Paul A. Grieco on the occasion of his
65th birthday.
* To whom correspondence should be addressed. E-mail: jerry.d.clark@
pfizer.com.
‡ Pfizer Global Research and Development, St. Louis Laboratories.
§ Pfizer Global Research and Development, Groton.
⊥ No longer employed by Pfizer.
(4) Weisenburger, G. A.; Anderson, D. K.; Clark, J. D.; Edney, A. D.;
Karbin, P. S.; Gallagher, D. J.; Knable, C. M.; Pietz, M. A. Org.
Process Res. DeV. 2009, 13 (1), 60.
1088
•
Vol. 13, No. 6, 2009 / Organic Process Research & Development
10.1021/op900173f CCC: $40.75 2009 American Chemical Society
Published on Web 09/04/2009