‡ Crystal data: for 1: C20H36P6Ti, M = 510.2, orthorhombic, space group
C2221 (no. 20), a = 11.632(6), b = 16.114(5), c = 13.920(4) Å, U =
2609(2) Å3; Z = 4, Dc = 1.30 Mg m23, T = 173(2) K. Data were obtained
with an Enraf-Nonius CAD4 diffractometer using Mo-Ka radiation, l =
0.71073 Å, (m = 0.70 mm21), on a crystal of dimensions 0.4 3 0.4 3 0.2
mm; 2112 unique reflections were measured for 2 < 2q < 30° and 2035
reflections with I > 2s(I) were used in the refinement. The final residuals
were R = 0.025, wR2 = 0.062 for I > 2s(I). Hydrogen atoms were refined
isotropically. The molecule lies on a crystallographic two fold rotation
axis.
¯
For 2: C25H45P7Ti, M = 610.3, triclinic, space group P1(no.2), a =
10.299(5), b = 11.910(6), c = 14.230(10) Å, a = 86.48(5), b = 71.00(5),
g = 68.75(4)°, U = 1535(2)Å3; Z = 2, Dc = 1.32 Mg m23, T = 173(2) K.
Data were obtained with an Enraf-Nonius CAD4 diffractometer using Mo-
Ka radiation, l = 0.71073 Å, (m = 0.66 mm21), on a crystal of dimensions
0.4 3 0.3 3 0.05 mm; 5362 unique reflections were measured for 2 < 2q
< 25° and 4021 reflections with I > 2s(I) were used in the refinement. The
final residuals were R = 0.077, wR2 = 0.196 for I > 2s(I).
crystallographic files in .cif format.
5
3
2
t
Fig. 2 Molecular structure of [Ti(h -P3C2But2)(h -h -P4C3 Bu3)] 2. Se-
lected distances (Å): Ti–M(1) 2.120(6), Ti–C(2) 2.503(6), Ti–C(11)
2.210(6), Ti–C(16) 2.465(5), Ti–C(17) 2.663(6), Ti–P(2) 2.472(2), Ti–P(3)
2.662(2), Ti–P(4) 2.577(2), Ti–P(5) 2.609(2), Ti–P(6) 2.673(3), Ti–P(7)
2.709(2), C(1)–P(1) 1.876(5), P(1)–P(2) 2.216(2), P(2)–C(2) 1.790(5),
C(2)–P(3) 1.752(5), P(3)–C(1) 1.831(6), P(1)–C(11) 1.858(5), C(11)–P(4)
1.828(5), P(4)–C(1) 1.909(5). M(1) refers to the centroid of the ring
P(5)C(16)P(7)C(17)P(6).
§ NMR for 1 (d8-toluene, 298 K). 1H (300.13 MHz): d 0.18 (s, 36 H,
2
Ti{P3C2[C(CH3)3]2}2). 13C{1H} (75.47 MHz): d 35.2 (d, JCP 7 Hz,
2
Ti{P3C2[C(CH3)3]2}2), 42.6 (d, JCP 18 Hz, Ti{P3C2[C(CH3]3]2}2).
31P{1H} (121.49 MHz): d 342.5 (t, 1P, 2JPP 44.2 Hz, PPCPC), 386.0 (d, 2P,
2JPP = 46.7 Hz, PPCPC).
NMR for 2 (d6-benzene, 298 K). 1H (300.13 MHz): d 1.05 (s, 9 H) 1.29
(s, 9 H), 1.38, 1.40 [2s (overlapping) 18 H], 1.67 (s, 9 H). 31P{1H} (121.49
MHz): dP(1) 260.3 (ddd, 1JP(1)P(2) 290, 2JP(1)P(3) 12, 2JP(1)P(4) 12 Hz), dP(2)
1
2
2
309 (dd, JP(1)P(2) 290, JP(2)P(3) 40 Hz), dP(3) 98.7 (dddd, JP(2)P(3) 40,
2JP(3)P(4) 32, 2JP(3)P(1) 12, 2JP(3)P(5) = 5 Hz), dP(4) 283.9 (dddd of m, 2JP(4)P(6)
70, 2JP(4)P(3) 32, 2JP(4)P(5) or P(1) 14, 2JP(4)P(1) or P(5) = 12, plus other ca. 5 Hz
inter-ring couplings), dP(5) 260.8 [dd, 1JP(5)P(6) 430, 2JP(5)P(7) 50, 2JP(5)P(4) 12
Hz (inter-ring)], dP(6) 301.3 [dd, 1JP(6)P(5) 430, 2JP(6)P(7) 52, 2JP(6)P(4) 70 Hz
(inter-ring)], dP(7) 225.2 (dd, 2JP(7)P(6) = 50, 2JP(7)P(5) 50 Hz).
13C{1H} and 31P{1H} NMR spectra§ are all sharp (and
temperature invariant over the range 185–385 K) and indicate
that in solution the two P3C2But2 rings are equivalent and that
there is no inter-ring coupling. This is in contrast to the iron and
ruthenium analogues which exhibit fluxional behaviour and
inter-ring coupling constants of 53 Hz (Fe) and 37.4 Hz
(Ru).13,14
1 G. P. Pez and J. N. Armor, Adv. Organomet. Chem., 1981, 19, 1.
2 R. D. Sanner, D. M. Duggan, T. C. McKenzie, R. E. Marsh and J. E.
Bercaw, J. Am. Chem. Soc., 1976, 98, 8358.
3 B. H. Edwards, R. D Rogers, D. J. Sikora, J. L. Atwood and M. D.
Rausch, J. Am. Chem. Soc., 1983, 105, 416.
4 L. B. Kool, M. D. Rausch, H. G. Alt, M. Herberhold, U. Thewalt and B.
Wolf, Angew. Chem., Int. Ed. Engl., 1985, 24, 394.
5 S. A. Cohen, P. R. Auburn and J. E. Bercaw, J. Am. Chem. Soc., 1983,
105, 1136.
6 V. Varga, K. Mach, M. Polásek, P. Sedmera, J. Hiller, U. Thewalt and
S. I. Troyanov, J. Organomet. Chem., 1996, 506, 241.
7 V. V. Burlakov, A. V. Polyakov, A. I Yanovsky, Y. T. Struchkov, V. B.
Shur, M. E. Vol’pin, U. Rosenthal and H. Görls, J. Organomet. Chem.,
1994, 476, 197.
8 P. B. Hitchcock, F. M. Kerton and G. A. Lawless, J. Am. Chem. Soc.,
1998, 120, 10264.
9 K. B. Dillon, F. Mathey and J. F. Nixon, Phosphorus: The Carbon Copy,
John Wiley and Sons, Chichester 1998 and references therein.
10 F. G. N. Cloke, K. R. Flower, P. B. Hitchcock and J. F. Nixon, J. Chem.
Soc., Chem. Commun., 1995, 1659.
11 F. G. N. Cloke and M. L. H. Green, J. Chem. Soc., Dalton Trans., 1981,
1938.
12 C. Callaghan, G. K. B. Clentsmith, F. G. N. Cloke, P. B. Hitchcock,
J. F. Nixon and D. M. Vickers, Organometallics, 1999, 18, 793.
13 P. B. Hitchcock, J. F. Nixon and R. M. Matos, J. Organomet. Chem.,
1995, 490, 155.
Decamethyltitanocene forms dinitrogen complexes (some
reversibly), and although 1 does not react with dinitrogen, it
readily undergoes addition reactions with CO or tBuNC to give
the 16e and 18e complexes [Ti(h -P3C2But2)2L] (L = CO) and
5
[Ti(h -P3C2But2)2L2] (L = CO, ButNC) respectively, which will
5
be reported in detail elsewhere.21 However, with an excess of
ButCP the novel red–brown 14e-complex [Ti(h -
5
P3C2But2)(h +h -P4C3But3)] 2 is formed as a result of an
3
2
5
unusual [2+2] cycloaddition with a PNC bond of one of the h -
P3C2But2 rings of 1 (Scheme 1). No reaction is observed in an
analagous experiment with ButCN. The molecular structure of
2, determined by a single crystal X-ray diffraction study,‡ is
5
shown in Fig. 2. The titanium is attached in an h -fashion to the
one remaining P3C2But2 ring and h +h - ligated to the new
P4C3But3 moiety. The 31P{1H} NMR spectrum of 2 exhibits the
expected seven different resonances and the 1H NMR spectrum
contains the expected five singlets.§
3
2
The mechanism of formation of 2 from 1 might involve the
intermediacy of an h - (or less likely h -ligated) ButCP complex
1
2
5
3
and the subsequent h - to h -ring slippage of one of the
P3C2But2 facilitating a [2+2] cycloaddition with the resulting
uncoordinated PNC bond leading to the product 2. Interestingly,
although 2 can be sublimed (170 °C, 1 3 1025 mbar) with only
slight decomposition to 1, it was not isolated from the original
cocondensation experiment.
14 R. Bartsch, P. B. Hitchcock and J. F. Nixon,. J. Chem. Soc., Chem.
Commun., 1987, 1146.
15 R. Bartsch, P. B. Hitchcock and J. F. Nixon,. J. Organomet. Chem.,
1988, 356, C1.
16 U. Zenneck, personal communication.
17 R. D Rogers, J. L. Atwood, D. Foust and M. D. Rausch, J. Cryst. Mol.
Struct., 1981, 11, 183.
To our knowledge, the only related metallocene ring addition
reactions previously reported concern nickelocene and fluoro-
alkenes or an activated norbornadiene however no structural
data are available for comparison.22,23
18 K. R Flower and P. B. Hitchcock, J. Organomet. Chem., 1996, 507,
275.
We thank Dr A. Abdul-Sada for recording the mass spectrum
of 1 and the EPSRC for financial support (for J. R. H.).
19 P. Seiler and J. Dunitz, Acta Crystallogr., Sect. B., 1979, 35, 1069.
20 A. Haaland, Acc. Chem. Res., 1978, 12, 415.
21 F. G. N. Cloke, J. R. Hanks, P. B. Hitchcock and J. F. Nixon, papers in
preparation.
Notes and references
† C20H36P6Ti: MS (EI, 70 eV), m/z 510 (100%) (M+), 57 (8%) (But+) with
the expected isotope pattern. Elemental analysis: C, 47.08 (46.57), H, 7.11
(7.15%).
22 M. Dubeck, J. Am. Chem. Soc., 1960, 82, 6193.
23 D. W. McBride, R. L. Pruett, E. Pitcher and F. G. A. Stone J. Am. Chem.
Soc., 1962, 84, 497.
Communication 9/05469C
1732
Chem. Commun., 1999, 1731–1732