M. Rancˇi´c et al. / Spectrochimica Acta Part A 86 (2012) 500–507
507
twisted excited state of compound 12 can be, under appropriate sol-
vent conditions, preferentially stabilized with respect to the ground
state (Table 3). Due to this, the excited and ground states are closer
and more rapid internal conversion is permitted. Variation of sub-
stituent patterns clearly indicates that contributions of both twist
and donor–acceptor character are involved in the ICT mechanism
of the investigated molecules.
[2] D. Steinhilber, C. Carlberg, Expert Opin. Ther. Pat. 9 (1999) 281–290.
[3] T. Tomasˇic´, N. Zidar, M. Mueller-Premru, D. Kikelj, L. Peterlin Masˇic´, Eur. J. Med.
Chem. 45 (2010) 1667–1672.
[4] F. Herrera, J.C. Mayo, V. Martín, R.M. Sainz, I. Antolin, C. Rodriguez, Cancer Lett.
211 (2004) 47–55.
[5] V. Enchev, I. Petkov, S. Chorbadijev, Struct. Chem. 5 (1994) 225–231.
[6] R. Markovic´, A. Shirazi, Z. Dzˇambaski, M. Baranac, D. Minic´, J. Phys. Org. Chem.
17 (2004) 118–123.
[7] P.V. Bharatam, S. Khanna, J. Phys. Chem. A 108 (2004) 3784–3788.
[8] M.L. Girrard, C. Dreux, Bull. Chem. Soc. Fr. (1968) 3477–3483.
[9] R. Hilal, A. Osman, Appl. Spectr. 32 (1978) 557–563.
[10] M. Spassova, V. Enchev, Chem. Phys. 298 (2004) 29–36.
[11] Y.-K. Wang, C.-F. Shu, E.M. Breitung, R.J. McMahon, J. Mater. Chem. 9 (1999)
1449–1452.
4. Conclusions
Solvent effects on the absorption maxima shifts of the investi-
gated compounds were successfully evaluated by using the Catalán
solvent parameter set. Solvent polarizability is the principal fac-
tor which influences the shift of absorption maxima, whereas the
solvent dipolarity, acidity and basicity are less important. The
absorption maxima undergo a bathochromic shift with increasing
solvent polarizability indicating that the excitation state is more
polarizable than the ground state. Specific interactions through
hydrogen bonding, expressed by solvent acidity and basicity, can
be attributed mainly to the carbonyl moiety and NH hydrogen
and they are only slightly affected by the arylidene substituent.
Moreover, different substituents significantly change the extent of
conjugation in the molecules and further affect their ICT character.
The correlation results imply that the solvatochromic properties
are the consequence of the overall effect of the molecule geom-
etry influenced by the electronic substituent effects transmitted
through ꢀ-conjugated systems. The results obtained in this study
help in assessing the potential application of the investigated com-
pounds in different homogeneous media.
[12] P. Hrobarik, P. Zahradnik, W.M.F. Fabian, Phys. Chem. Chem. Phys. 6 (2004)
495–502.
[13] B. Albinsson, J. Mårtensson, J. Photochem. Photobiol. C 9 (2008) 138–155.
[14] M. Okazaki, N. Uchino, M. Ishira, H. Fukunaga, Bull. Chem. Soc. Jpn. 71 (1998)
1713–1718.
[15] A. Sarkar, P. Banerjee, Sk.U. Hossain, S. Bhattacharya, S.C. Bhattacharya, Spec-
trochim. Acta A 72 (2009) 1097–1102.
[16] J. Catalàn, J. Phys. Chem. B 113 (2009) 5951–5960.
[17] C. Hansch, A. Leo, D. Hoekman, Exploring QSAR: Hydrophobic, Electronic and
Steric Constants; American Chemical Society; ACS Professional Reference Book,
American Chemical Society, Washington, DC, 1995.
[18] V. Barone, A. Polimeno, Chem. Soc. Rev. 36 (2007) 1724–1731.
[19] P. Wiggins, J.A.G. Williams, D.J. Tozer, J. Chem. Phys. 131 (2009) 091101.
[20] B.R. Prashantha Kumar, M.D. Karvekar, L. Adhikary, M.J. Nanjan, B. Suresh, J.
Heterocyc. Chem. 43 (2006) 897–903.
[21] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheese-
man, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P.
Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Strat-
mann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich,
A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari,
J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Ste-
fanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith,
M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. John-
son, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C. 02,
Gaussian, Inc., Wallingford CT, 2004.
Acknowledgement
The authors are grateful to the Ministry of Science of the Repub-
lic of Serbia for financial support (project 172013).
[22] Y. Amatatsu, J. Mol. Struc.: THEOCHEM 624 (2003) 159–167.
References
[1] N.D. Oakes, C.J. Kennedy, A.B. Jenkins, D. Ross-Laybutt, D.J. Chisholm, E.W. Krae-
gen, Diabetes 43 (1994) 1203–1210.