[39] J. Poater, M. Duran, M. Sola, B. Silvi, Theoretical evaluation of electron delocalization in aromatic
molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological
approaches, Chem. Rev. 105 (2005) 3911-3947.
[40] S. Noury, X. Krokidis, F. Fuster, B. Silvi, Computational tools for the electron localization function
topological analysis, Comput. Chem. (Oxford) 23 (1999) 597-604.
[41] F. Zhou, R. Liu, P. Li, H. Zhang, On the properties of S⋯ O and S⋯ π noncovalent interactions: the
analysis of geometry, interaction energy and electron density, New J. Chem. 39 (2015) 1611-1618.
[42] B. Silvi, A. Savin, Classification of chemical bonds based on topological analysis of electron
localization functions, Nature 371 (1994) 683-686.
[43] R.F. Bader, T. Nguyen-Dang, Quantum theory of atoms in molecules–Dalton revisited, Adv.
Quantum Chem. 14 (1981) 63-124.
[44] E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A.J. Cohen, W. Yang, Revealing
noncovalent interactions, J. Am. Chem. Soc. 132 (2010) 6498-6506.
[45] A. Otero-de-la-Roza, E.R. Johnson, J. Contreras-García, Revealing non-covalent interactions in solids:
NCI plots revisited, Phys. Chem. Chem. Phys. 14 (2012) 12165-12172.
[46] C. Narth, Z. Maroun, R.A. Boto, R. Chaudret, M.-L. Bonnet, J.-P. Piquemal, J. Contreras-García, A
complete NCI perspective: From new bonds to reactivity, in: R. Remi Chauvin, C. Christine Lepetit, B.
Bernard Silvi, E. Alikhani (Eds.), Applications of Topological Methods in Molecular Chemistry, Springer,
Switzerland, 2015, pp. 491-527.
[47] R. Chaudret, B. De Courcy, J. Contreras-Garcia, E. Gloaguen, A. Zehnacker-Rentien, M. Mons, J.-P.
Piquemal, Unraveling non-covalent interactions within flexible biomolecules: from electron density
topology to gas phase spectroscopy, Phys. Chem. Chem. Phys. 16 (2014) 9876-9891.
[48] J.N. Asegbeloyin, E.E. Oyeka, O.C. Okpareke, A. Ibezim, Synthesis, structure, computational and in-
silico anticancer studies of N, N-diethyl-N′-palmitoylthiourea, J. Mol. Struct. 1153 (2018) 69-77.
[49] J.N. Asegbeloyin, D.C. Izuogu, E.E. Oyeka, O.C. Okpareke, A. Ibezim, Crystal structure, non-covalent
interaction and molecular docking studies of 2-{[2-phenylsulfonyl) hydrazinylidene] methyl} benzoic acid
and its dysprosium catalysed cyclized product: 2-(phenyl-sulfonyl) phthalazin-1 (2H)-one, J. Mol. Struct.
1175 (2019) 219-229.
[50] N.L. Henry, D.F. Hayes, Cancer biomarkers, Mol. Oncol. (2012) 140-146.
[51] P. Seshacharyulu, M.P. Ponnusamy, D. Haridas, M. Jain, A.K. Ganti, S.K. Batra, Targeting the EGFR
signaling pathway in cancer therapy, Expert Opin. Ther. Targets 16 (2012) 15-31.
[52] J.R. Grandis, J.C. Sok, Signaling through the epidermal growth factor receptor during the
development of malignancy, Pharmacol. Ther. 102 (2004) 37-46.
[53] A. Wells, EGF receptor, Int. J. Biochem. Cell Biol. 31 (1999) 637-643.
[54] R.D. Gascoyne, L. Lamant, J.I. Martin-Subero, V.S. Lestou, N.L. Harris, H.-K. Müller-Hermelink, J.F.
Seymour, L.J. Campbell, D.E. Horsman, I. Auvigne, ALK-positive diffuse large B-cell lymphoma is
associated with Clathrin-ALK rearrangements: report of 6 cases, Blood 102 (2003) 2568-2573.
[55] C.A. Griffin, A.L. Hawkins, C. Dvorak, C. Henkle, T. Ellingham, E.J. Perlman, Recurrent involvement of
2p23 in inflammatory myofibroblastic tumors, Cancer Res. 59 (1999) 2776-2780.
[56] Y.P. Mossé, M. Laudenslager, L. Longo, K.A. Cole, A. Wood, E.F. Attiyeh, M.J. Laquaglia, R. Sennett,
J.E. Lynch, P. Perri, Identification of ALK as a major familial neuroblastoma predisposition gene, Nature
455 (2008) 930.
[57] A.K. Murugan, M. Xing, Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK
gene, Cancer Res. (2011) canres. 4041.2010.
[58] H. Ren, Z.-P. Tan, X. Zhu, K. Crosby, H. Haack, J.-M. Ren, S. Beausoleil, A. Moritz, G. Innocenti, J.
Rush, Identification of anaplastic lymphoma kinase as a potential therapeutic target in ovarian cancer,
Cancer Res. 72 (2012).
29