10.1002/chem.201806371
Chemistry - A European Journal
COMMUNICATION
Medina, F. Agbossou-Niedercorn, J. Organomet. Chem. 2017, 847, 13–
2005, 44, 5188–5240; Angew. Chem. 2005, 117, 5320–5374; c)
Organic Azides: Syntheses and Applications, (Eds.: S. Bräse, K.
Banert) John Wiley & Sons, Chichester, 2010.
27.
[2]
For recent examples, see: a) Y. Xi, T. W. Butcher, J. Zhang, J. F.
Hartwig, Angew. Chem. Int. Ed. 2016, 55, 776–780; Angew. Chem.
2016, 128, 786–790; b) L. Zhu, P. Xiong, Z.-Y. Mao, Y.-H. Wang, X.
Yan, X. Lu, H.-C. Xu, Angew. Chem. Int. Ed. 2016, 55, 2226–2229;
Angew. Chem. 2016, 128, 2266–2269; c) J. A. Gurak Jr., K. S. Yang, Z.
Liu, K. M. Engle, J. Am. Chem. Soc. 2016, 138, 5805–5808; d) G.
Sipos, A. Ou, B. W. Skelton, L. Falivene, L. Cavallo, R. Dorta, Chem.
Eur. J. 2016, 22, 6939–6946; e) N. J. Adamson, E. Hull, S. J.
Malcolmson, J. Am. Chem. Soc. 2017, 139, 7180–7183; f) X.-H. Yang,
A. Lu, V. M. Dong, J. Am. Chem. Soc. 2017, 139, 14049–14052; g) L. A.
Perego, R. Blieck, A. Groué, F. Monnier, M. Taillefer, I. Ciofini, L.
Grimaud, ACS Catal. 2017, 7, 4253–4264; h) Y. Zhou, O. D. Engl, J. S.
Bandar, E. D. Chant, S. L. Buchwald, Angew. Chem. Int. Ed. 2018, 57,
6672–6675; Angew. Chem. 2018, 130, 6782–6785; i) S. Ichikawa, S.
Zhu, S. L. Buchwald, Angew. Chem. Int. Ed. 2018, 57, 8714–8718;
Angew. Chem. 2018, 130, 8850–8854; j) C. Lepori, P. G mez-Orellana,
A. Ouharzoune, R. G illot, . led s, G. Ujaque, J. Hannedouche, ACS
Catal. 2018, 8, 4446–4451.
[13] For recent reviews, see: a) K. Wu, Y. Liang, N. Jiao, Molecules 2016,
21, 352; b) M. Goswami, B. de Bruin, Eur. J. Org. Chem. 2017, 1152–
1176.
[14] For most recent examples, see:a) N. Fu, G. S. Sauer, A. Saha, A. Loo,
S. Lin, Science 2017, 357, 575–579; b) H. Peng, Z. Yuan, P. Chen, G.
Liu, Chin. J. Chem. 2017, 35, 876–880; c) B. Yang, Z. Lu, ACS Catal.
2017, 7, 8362–8365; d) A. Bunescu, T. M. Ha, Q. Wang, J. Zhu, Angew.
Chem. Int. Ed. 2017, 56, 10555–10558; Angew. Chem. 2017, 129,
10691–10694; e) Z. Liu, Z.-Q. Liu, Org. Lett. 2017, 19, 5649–5652; f) F.
Cong, Y. Wei, P. Tang, Chem. Commun. 2018, 54, 4473–4476; g) S.-J.
Shen, C.-L. Zhu, D.-F. Lu, H. Xu, ACS Catal. 2018, 8, 4473–4482; h) L.
Zhang, S. Liu, Z. Zhao, H. Su, J. Hao, Y. Wang Chem. Sci. 2018, 9,
6085–6090; i) W.-Y. Li, C.-S. Wu, Z. Wang, Y. Luo, Chem. Commun.
2018, 54, 11013–11016. j) Y.-X. Zhang, R.-X. Jin, H. Yin, Y. Li, X.-S.
Wang, Org. Lett. 2018, 20, 7283–7287.
[15] J. Waser, E. M. Carreira, Azides by Olefin Hydroazidation Reactions, in
Organic Azides: Syntheses and Applications, (Eds.: S. Bräse, K.
Banert) John Wiley & Sons, Chichester, 2010, 95–111.
[3]
[4]
M. Beller, H. Trauthwein, M. Eichberger, C. Breindl, J. Herwig, T. E.
Müller, O. R. Thiel, Chem. Eur. J. 1999, 5, 1306–1319.
[16] a) J. Waser, H. Nambu, E. M. Carreira, J. Am. Chem. Soc. 2005, 127,
8294–8295; b) J. Waser, B. Gaspar, H. Nambu, E. M. Carreira, J. Am.
Chem. Soc. 2006, 128, 11693–11712.
a) J. Takaya, J. F. Hartwig, J. Am. Chem. Soc. 2005, 127, 5756–5757;
b) A. Takemiya, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 6042–
6043.
[17] a) P. Va, E. L. Campbell, W. M. Robertson, D. L. Boger, J. Am. Chem.
Soc. 2010, 132, 8489–8495; b) E. K. Leggans, T. J. Barker, K. K.
Duncan, D. L. Boger, Org. Lett. 2012, 14, 1428–1431.
[5]
R. P. Rucker, A. M. Whittaker, H. Dang, G. Lalic, J. Am. Chem. Soc.
2012, 134, 6571–6574.
[6]
[7]
S. Zhu, S. L. Buchwald, J. Am. Chem. Soc. 2014, 136, 15913–15916.
a) A. R. Ickes, S. C. Ensign, A. K. Gupta, K. L. Hull, J. Am. Chem. Soc.
2014, 136, 11256–11259; b) S. C. Ensign, E. P. Vanable, G. D.
Kortman, L. J. Weir, K. L. Hull, J. Am. Chem. Soc. 2015, 137, 13748–
13751; c) S. N. Gockel, T. L. Buchanan, K. L. Hull, J. Am. Chem. Soc.
2018, 140, 58–61.
[18] a) A. Kapat, A. Kōnig, F. Montermini, P. Renaud, J. Am. Chem. Soc.
2011, 133, 13890–13893; b) D. Meyer, P. Renaud, Angew. Chem. Int.
Ed. 2017, 56, 10858; Angew. Chem. 2017, 129, 10998–11001.
[19] G. H. Lonca, D. Y. Ong, T. M. H.Tran, C. Tejo, S. Chiba, F. Gagosz,
Angew. Chem. Int. Ed. 2017, 56, 11440–11444; Angew. Chem. 2017,
129, 11598-11602.
[8]
[9]
a) J. Kemper, A. Studer, Angew. Chem. Int. Ed. 2005, 44, 4914–4917;
Angew. Chem. 2005, 117, 4993–4995; b) J. Guin, C. Mück-Lichtenfeld,
S. Grimme, A. Studer, J. Am. Chem. Soc. 2007, 129, 4498–4903.
a) T. M. Nguyen, D. A. Nicewicz, J. Am. Chem. Soc. 2013, 135, 9588–
8591; b) T. M. Nguyen, N. Manohar, D. A. Nicewicz, Angew. Chem. Int.
Ed. 2014, 53, 6198–6201; Angew. Chem. 2014, 126, 6312–6315.
[20] a) J. C. K. Chu, T. Rovis, Nature 2016, 539, 272–275; b) D.-F. Chen, J.
C. K. Chu, T. Rovis, J. Am. Chem. Soc. 2017, 139, 14897–14900.
[21] M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal Jr., G.
G. Malliaras, S. Bernhard, Chem. Mater. 2005, 17, 5712–5719.
[22] B. Yang, X. Ren, X. Shen, T. Li, Z. Lu, Chin. J. Chem. 2018, 36, 1017-
1023.
[10] For related anti-Markovnikov reactions, see: a) D. S. Hamilton, D. A.
Nicewicz, J. Am. Chem. Soc. 2012, 134, 18577–18580; b) D. J. Wilger,
J.-M. M. Grandjean, T. R. Lammert, D. A. Nicewicz, Nature Chem.
2014, 6, 720–726.
[23] The recycle of [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 from its reduced form may
also be involved in a recently reported hydrotrifluoromethylation of
alkenes with sodium triflinate. L. Zhu, L.-S Wang, B Li, B. Fu, C.-P.
Zhang, W. Li, Chem. Commun. 2016, 52, 6371–6374.
[11] a) A. J. Musacchio, L. Q. Nguyen, G. H. Beard, R. R. Knowles, J. Am.
Chem. Soc. 2014, 136, 12217–12220; b) A. J. Musacchio, B. C.
Lainhart, X. Zhang, S. G.Naguib, T. C. Sherwood, R. R. Knowles,
Science 2017, 355, 727–730; c) Q. Zhu, D. E. Graff, R. R. Knowles, J.
Am. Chem. Soc. 2018, 140, 741–747.
[24] a) P. J. Dunn, Chem. Soc. Rev. 2012, 41, 1452–1461; b) B. H. Lipshutz,
S. Ghorai, Green Chem. 2014, 16, 3660–3679.
[12] a) E. F. V. Scriven, K. Turnbull, Chem. Rev. 1988, 88, 297–368; b) S.
Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed.
This article is protected by copyright. All rights reserved.