4526
J. Am. Chem. Soc. 2000, 122, 4526-4527
Scheme 2a
Transannular Diels-Alder Entry into Stemodanes:
First Asymmetric Total Synthesis of (+)-Maritimol
Andra´s Toro´, Pawel Nowak, and Pierre Deslongchamps*
Laboratoire de Synthe`se Organique
UniVersite´ de Sherbrooke
Quebec, Canada, J1H 5N4
ReceiVed February 29, 2000
(+)-Maritimol (1), a member of the stemodane diterpenoids
(1-3), was isolated1 from Stemodia maritima L. (Scrophulari-
aceae) and used as a Caribbean folk medicine for treatment of
venereal diseases. It represents a long-standing synthetic chal-
lenge2 with its unique tetracyclic stemodane framework and the
construction of its seven chiral centers, particularly the two central,
adjacent quaternary carbons at positions 9 and 10. Reported in
this contribution is the first asymmetric total synthesis of (+)-
maritimol, applying the TADA strategy, developed in our
laboratory (Scheme 1).3a
Scheme 1
a Reagents: (a) NaBH4, MeOH, >73%. (b) Imidazole, TBS-Cl, 95%.
(c) NaOH, THF, 5 °C, 96%. (d) Carbonyldiimidazole then Et3N and
NH(OMe)Me‚HCl, 89%. (e) DIBALH, CH2Cl2, -78 °C then MeOH,
89%. (f) SAMP, PTSA (cat.), PhH, 80 °C, 93%. (g) Imidazole, TBDPS-
Cl, 100%. (h) LDA, 0 °C then 8, THF, -100 °C, 83%. (i) Mg-
monoperoxyphthalate, MeOH/Et2O, 98%. (j) Py‚HF, THF then 9,
PdCl2‚(MeCN)2, DMF, 52%. (k) (Cl3C)2CO, PPh3, CH2Cl2, -78 to 0
°C, 94%. (l) Cs2CO3, CsI, MeCN, 80 °C, 75%. (m) TBAF, THF, 87%.
(n) Dess-Martin periodinane, 91%.
Retrosynthetic analysis suggests that tetracycle 4, a central
advanced intermediate of stemodanes,2a is available via TSC-
tricycle 5 corresponding4 to macrocycle 6 (Scheme 1). This chiral
macrocycle, in turn, can be made in a highly convergent manner,
starting from tetrasubstituted cis-dienophile 7. Following an
introduction of the requisite asymmetry via (S)-N-amino-2-
(methoxymethyl)pyrrolidine (SAMP)5 hydrazone-based alkylation
with Z-1,3-diiodo-propene (8),6 a Stille coupling7 with stannane
98 delivers the ω-functionalized acyclic â-ketoester substrate for
macrocyclization.
The actual synthesis began with aldehyde 10 (Scheme 2),
available in two steps (70%) from commercial Hagemann’s ester.9
NaBH4 reduction and silyl protection provided tetrasubstituted
cis-dienophile 12 (70%), which was selectively hydrolyzed to
monoacid 13 (93%) and further transformed into Weinreb amide
14 (89%).10 Parallel reduction (DIBAL-H) of both carbonyls
afforded, after a methanol quench, methoxytetrahydropyran 15,
which could be easily transformed to SAMP5 hydrazone 16 (83%).
From a synthetic point of view, the A.B.C[6.6.5] trans-syn-
cis (TSC) ring system of maritimol correlated well4a with our
previous fundamental TADA model studies, having demonstrated
the stereospecific transformation of 14- and 15-membered trans-
cis-cis (TCC) macrocyclic trienes to the respective A.B.C[6.6.6]4b
and [6.6.7]4c TSC-tricycles. It was also shown that even tetra-
substituted dienophiles were tolerated, particularly when they were
activated.4a,c Moreover, a discovery that a stereogenic center on
the macrocycle at the maritimol pro-12 position may induce
perfect diastereoface selection in the TADA reaction was also
made.4a
(1) Hufford, C. D.; Guerrero, R. D.; Doorenbos, N. J. J. Pharm. Sci. 1976,
95, 778-780.
(2) For a recent review on the synthesis of stemodane diterpenoids, see:
(a) Toyota, M.; Ihara, M. Tetrahedron 1999, 55, 5641-5679. See also: (b)
Pearson, A. J.; Fang, X. J. Org. Chem. 1997, 62, 5284-5292 and references
therein. (c) Piers, E.; Abeysekera, B. F.; Herbert, D. J.; Suckling, I. D. Can.
J. Chem. 1985, 63, 3418-3432.
(3) (a) Deslongchamps, P. Pure Appl. Chem. 1992, 64, 1831-1847. For
other TADA approaches to natural products, see: (b) Takahashi, T.; Shimizu,
K.; Doi, T.; Tsuji, J. J. Am. Chem. Soc. 1988, 110, 2674-2676. (c) Wood, J.
L.; Porco, J. A.; Taunton, J.; Lee, A. Y.; Clardy, J.; Schreiber, S. L. J. Am.
Chem. Soc. 1992, 114, 5898-5900. (d) Shing, T. K. M.; Yang, J. J. Org.
Chem. 1995, 60, 5785-5789. (e) Roush, W. R.; Koyama, K.; Curtin, M. L.;
Moriarty, K. J. J. Am. Chem. Soc. 1996, 118, 7502-7512. (f) Vanderwal, C.
D.; Vosburg, D. A.; Weiler, S.; Sorensen, E. J. Org. Lett. 1999, 1, 645-648.
(4) (a) Toro´, A.; Lemelin, C.-A.; Pre´ville, P.; Be´langer, G.; Deslongchamps,
P. Tetrahedron 1999, 55, 4655-4684. (b) Lamothe, S.; Ndibwami, A.;
Deslongchamps, P. Tetrahedron Lett. 1988, 29, 1641-1644. (c) Hall, D. G.;
Caille´, A-S.; Drouin, M.; Lamothe, S.; Mu¨ller, R.; Deslongchamps, P.
Synthesis 1995, 1081-1088.
(5) Enders, D.; Kipphardt, H.; Fey, P. Org. Synth. 1987, 65, 183-202.
(6) (a) Sato, Y.; Nukui, S.; Sodeoka, M.; Shibasaki, M. Tetrahedron 1994,
50, 371-382. (b) Piers, E.; Renaud, J.; Rettig, S. J. Synthesis 1998, 590-
602.
(7) (a) Stille, J. K.; Tanaka, M. J. Am. Chem. Soc. 1987, 109, 3785-3786.
For a comprehensive review see: (b) Farina, V.; Krishnamurthy, V.; Scott,
W. J. In Organic Reactions; Paquette, L. A., Ed.; John Wiley and Sons: New
York, 1997; Vol.50, pp 1-652.
(8) Prepared in two steps in 67% overall yield according to: (a) Cliff, M.
D.; Pyne, S. G. Tetrahedron Lett. 1995, 36, 763-766. (b) Crabtree, S. R.;
Mander, L. N.; Sethi, S. P. Org. Synth. 1991, 70, 256-264.
10.1021/ja000728f CCC: $19.00 © 2000 American Chemical Society
Published on Web 04/21/2000