Organic Letters
ORCID
Letter
(12) For other contributions from our group using XtalFluor-E, see:
(a) Pouliot, M.-F.; Angers, L.; Hamel, J.-D.; Paquin, J.-F. Org. Biomol.
Chem. 2012, 10, 988−993. (b) Pouliot, M.-F.; Angers, L.; Hamel, J.-D.;
Notes
Paquin, J.-F. Tetrahedron Lett. 2012, 53, 4121−4123. (c) Mahe,
Desroches, J.; Paquin, J.-F. Eur. J. Org. Chem. 2013, 2013, 4325−4331.
(d) Pouliot, M.- F.; Mahe, O.; Hamel, J.-D.; Desroches, J.; Paquin, J.-F.
Org. Lett. 2012, 14, 5428−5431. (e) Keita, M.; Vandamme, M.; Mahe,
́
O.;
The authors declare no competing financial interest.
́
́
ACKNOWLEDGMENTS
O.; Paquin, J.-F. Tetrahedron Lett. 2015, 56, 461−464. (f) Desroches,
J.; Champagne, P. A.; Benhassine, Y.; Paquin, J.-F. Org. Biomol. Chem.
2015, 13, 2243−2246. (g) Keita, M.; Vandamme, M.; Paquin, J.-F.
Synthesis 2015, 47, 3758−3766. (h) Vandamme, M.; Bouchard, L.;
Gilbert, A.; Keita, M.; Paquin, J.-F. Org. Lett. 2016, 18, 6468−6471.
(i) Lebleu, T.; Paquin, J.-F. Tetrahedron Lett. 2017, 58, 442−444.
(13) Monofluoroalkenes were observed when the deoxofluorination
of cyclohexanone (72% GC yield) and 4-methoxyacetophenone (15%
GC yield) were performed using 2,2-difluoro-1,3-dimethyl-
imidazolidine (DFI); see Hayashi, H.; Sonoda, H.; Fukumura, K.;
Nagata, T. Chem. Commun. 2002, 1618−1619.
(14) A patent describing the eliminative deoxofluorination using
DAST under strong acidic conditions was reported; see: Boswell, G.
A., Jr. Preparation of vinylene fluorides. U.S. Patent 4,212,815, 1980.
(15) The deoxofluorination of β-diketones with N,N-diethyl-α,α-
difluoro-m-methylbenzylamine provides β-fluoro-α,β-unsaturated ke-
tones, see: (a) Sano, K.; Fukuhara, T.; Hara, S. J. Fluorine Chem. 2009,
130, 708−713. Reaction of cyclohexanone with the same reagent
provides fluorocyclohexane in 58% yield along with 32% of
difluorocyclohexane, see: (b) Hara, S.; Fukuhara, T. Method of
fluorination. U.S. Patent 20060014972, 2006.
(16) For selected recent alternative approaches to monofluoroalkene-
containing cyclohexane derivatives, see: (a) Furuya, T.; Ritter, T. Org.
́
Lett. 2009, 11, 2860−2863. (b) Alonso, P.; Pardo, P.; Fananas, F. J.;
Rodríguez, F. Chem. Commun. 2014, 50, 14364−14366. (c) Okor-
omoba, O. E.; Han, J.; Hammond, G. B.; Xu, B. J. Am. Chem. Soc.
2014, 136, 14381−14384. (d) Nihei, T.; Kubo, Y.; Ishihara, T.;
Konno, T. J. Fluorine Chem. 2014, 167, 110−121. (e) Lou, S.-J.; Xu,
D.-Q.; Xu, Z.-Y. Angew. Chem., Int. Ed. 2014, 53, 10330−10335.
(f) Hamel, J.-D.; Cloutier, M.; Paquin, J.-F. Org. Lett. 2016, 18, 1852−
1855.
■
This work was supported by the Natural Sciences and
Engineering Research Council of Canada, the Fonds de
recherche du Quebec−Nature et technologies, OmegaChem,
́ ́
and the Universite Laval. Eliane Soligo (Universite Laval) is
thanked for preliminary experiments.
REFERENCES
■
(1) (a) Taguchi, T.; Yanai, H. In Fluorine in Medicinal Chemistry and
Chemical Biology; Ojima, I., Ed.; Blackwell Publishing Inc.: 2009; pp
257−290. (b) Choudhary, A.; Raines, R. T. ChemBioChem 2011, 12,
1801−1807.
(2) For selected recent applications, see: (a) Villiers, E.; Couve-
Bonnaire, S.; Cahard, D.; Pannecoucke, X. Tetrahedron 2015, 71,
7054−7062. (b) Nadon, J.-F.; Rochon, K.; Grastilleur, S.; Langlois, G.;
Dao, T. T. H.; Blais, V.; Guer
́
in, B.; Gendron, L.; Dory, Y. L. ACS
Chem. Neurosci. 2017, 8, 40−49.
(3) Weintraub, P. M.; Holland, A. K.; Gates, C. A.; Moore, W. R.;
Resvick, R. J.; Bey, P.; Peet, N. P. Bioorg. Med. Chem. 2003, 11, 427−
431.
(4) For selected examples, see: (a) Cardone, A.; Martinelli, C.;
Losurdo, M.; Dilonardo, E.; Bruno, G.; Scavia, G.; Destri, S.; Cosma,
P.; Salamandra, L.; Reale, A.; Di Carlo, A.; Aguirre, A.; Milian
B.; Gierschnerf, J.; Farinola, G. M. J. Mater. Chem. A 2013, 1, 715−
727. (b) Milad, R.; Shi, J.; Aguirre, A.; Cardone, A.; Milian-Medina, B.;
Farinola, G. M.; Abderrabba, M.; Gierschner, J. J. Mater. Chem. C
2016, 4, 6900−6906.
(5) For selected recent examples, see: (a) Koh, M. J.; Nguyen, T. T.;
Zhang, H.; Schrock, R. R.; Hoveyda, A. H. Nature 2016, 531, 459−
465. (b) Nguyen, T. T.; Koh, M. J.; Shen, X.; Romiti, F.; Schrock, R.
̃
́
-Medina,
́
(17) Additional optimization results can be found in the Supporting
R.; Hoveyda, A. H. Science 2016, 352, 569−575. (c) Guer
I.; Gaumont, A.-C.; Pannecoucke, X.; Couve-Bonnaire, S. Org. Lett.
, K.; Schneider, C.; Bouillon, J.-P.;
́
in, D.; Dez,
(18) Giudicelli, M. B.; Picq, D.; Veyron, B. Tetrahedron Lett. 1990,
31, 6527−6530.
(19) Okoromoba, O. E.; Han, J.; Hammond, G. B.; Xu, B. J. Am.
Chem. Soc. 2014, 136, 14381−14384.
(20) A related alkoxy-N,N-dialkylaminodifluorosulfane has been
isolated and characterized; see: Sutherland, A.; Vederas, J. C. Chem.
Commun. 1999, 1739−1740.
(21) (a) Middleton, W. J. J. Org. Chem. 1975, 40, 574−578.
(b) Singh, R. P.; Shreeve, J. M. Synthesis 2002, 2561−2578.
(22) Pustovit, Y. M.; Nazaretian, V. P. J. Fluorine Chem. 1991, 55,
29−36.
(23) (a) Blint, R. J.; McMahon, T. B.; Beauchamp, J. L. J. Am. Chem.
Soc. 1974, 96, 1269−1278. (b) Williamson, A. D.; LeBreton, P. R.;
Beauchamp, T. B. J. Am. Chem. Soc. 1976, 98, 2705−2709.
(24) We cannot exclude the potential role of DMA (or DMF) as a
weak base; see ref 20a.
2016, 18, 3606−3609. (d) Rousee
́
Levacher, V.; Hoarau, C.; Couve-Bonnaire, S.; Pannecoucke, X. Org.
Biomol. Chem. 2016, 14, 353−357.
(6) For reviews on their synthesis, see: (a) van Steenis, J. H.; van der
Gen, A. J. Chem. Soc., Perkin Trans. 1 2002, 2117−2133. (b) Zajc, B.;
Kumar, R. Synthesis 2010, 2010, 1822−1836. (c) Landelle, G.;
Bergeron, M.; Turcotte-Savard, M.-O.; Paquin, J.-F. Chem. Soc. Rev.
2011, 40, 2867−2908. (d) Yanai, H.; Taguchi, T. Eur. J. Org. Chem.
2011, 2011, 5939−5954. (e) Hara, S. Top. Curr. Chem. 2012, 327, 59−
86. (f) Pfund, E.; Lequeux, T.; Gueyrard, D. Synthesis 2015, 47, 1534−
1546. (g) Champagne, P. A.; Desroches, J.; Hamel, J.-D.; Vandamme,
M.; Paquin, J.-F. Chem. Rev. 2015, 115, 9073−9174.
(7) Strobach, D. R.; Boswell, G. A., Jr. J. Org. Chem. 1971, 36, 818−
820.
(8) Yang, M.-H.; Matikonda, S. S.; Altman, R. A. Org. Lett. 2013, 15,
3894−3897.
(25) Laurence, C.; Brameld, K. A.; Graton, J.; Le Questel, J.-Y.;
(9) Ye, Y.; Takada, T.; Buchwald, S. L. Angew. Chem., Int. Ed. 2016,
55, 15559−15563.
Renault, E. J. Med. Chem. 2009, 52, 4073−4086.
(10) The price per mmol (in American dollars) for the following
reagent was calculated using the largest amount available from a single
provider (February 2017): TrisNHNH2 ($18.96), NFSI ($4.87),
TESCF3 ($17.37), XtalFluor-E ($0.77), Et3N·3HF ($0.21).
(11) (a) Beaulieu, F.; Beauregard, L.-P.; Courchesne, G.; Couturier,
M.; Laflamme, F.; L’Heureux, A. Org. Lett. 2009, 11, 5050−5053.
(b) L’Heureux, A.; Beaulieu, F.; Bennett, C.; Bill, D. R.; Clayton, S.;
Laflamme, F.; Mirmehrabi, M.; Tadayon, S.; Tovell, D.; Couturier, M.
J. Org. Chem. 2010, 75, 3401−3411. (c) Mahe, O.; L’Heureux, A.;
Couturier, M.; Bennett, C.; Clayton, S.; Tovell, D.; Beaulieu, F.;
Paquin, J.-F. J. Fluorine Chem. 2013, 153, 57−60.
D
Org. Lett. XXXX, XXX, XXX−XXX