Organic Letters
Letter
cyclization also proceeded using 1,3-disubstituted allenes 5e−
g as substrates, affording 2-substituted 3,4-fused tricyclic 3-
alkylidene indoline derivatives 6e−g in 74−86% yield. When
1,1-disubstituted allene derivative 5h and α-branched allene
derivative 5i were used, the corresponding products 6h and 6i
were obtained in moderate yield. The reaction using N-tosyl-
tethered-type substrate 5j and quaternary α-amino acid
derivative 5k proceeded under the same reaction conditions,
providing compounds 6j and 6k in 72 and 79% yield,
respectively. The yield of 6k improved to 94% yield using 10
mol % of Pd catalyst. Moreover, the reaction of 5l, bearing a
CH2-unit-longer tether than that in 5a, gave the correspond-
ing eight-membered ring-fused tricyclic 3-alkylidene indoline
derivative 6l in 68% yield when using 10 mol % of Pd
catalyst.
studies on the application of this process to natural product
synthesis, as well as mechanistic investigation into the reaction
pathway,14 are in progress.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedure, compound characterization, and
NMR charts. The Supporting Information is available free
AUTHOR INFORMATION
■
Corresponding Author
Transformations of the reaction products into 3,4-fused
tricyclic indole derivatives were further examined (Scheme 4).
Notes
The authors declare no competing financial interest.
Scheme 4. Transformations of the Reaction Products into
3,4-Fused Tricyclic Indole Derivatives
ACKNOWLEDGMENTS
■
This work was supported by JSPS KAKENHI Grant No.
15K07850, Suzuken Memorial Foundation, and Chiba
University.
REFERENCES
■
(1) (a) Cheng, D.-J.; Wu, H.-B.; Tian, S.-K. Org. Lett. 2011, 13,
5636. (b) Peshkov, V. A.; Van Hove, S.; Donets, P. A.; Pereshivko,
O. P.; Van Hecke, K.; Van Meervelt, L.; Van der Eycken, E. V. Eur. J.
Org. Chem. 2011, 1837. (c) Schonherr, H.; Leighton, J. L. Org. Lett.
̈
2012, 14, 2610. (d) Hellal, M.; Singh, S.; Cuny, G. D. J. Org. Chem.
2012, 77, 4123. (e) Xu, Q.-L.; Dai, L.-X.; You, S.-L. Chem. Sci. 2013,
4, 97.
(2) For recent natural product syntheses based on this strategy, see
the following. Aurantioclavine: (a) Yamada, K.; Namerikawa, Y.;
Haruyama, T.; Miwa, Y.; Yanada, R.; Ishikura, M. Eur. J. Org. Chem.
2009, 5752. (b) Brak, K.; Ellman, J. A. Org. Lett. 2010, 12, 2004.
Clavicipitic acid: (c) Xu, Z.; Li, Q.; Jia, Y. J. Org. Chem. 2009, 74,
6859. (d) Bartoccini, F.; Casoli, M.; Mari, M.; Piersanti, G. J. Org.
Chem. 2014, 79, 3255. Lysergic acid: (e) Inuki, S.; Oishi, S.; Fujii,
N.; Ohno, H. Org. Lett. 2008, 10, 5239. (f) Iwata, A.; Inuki, S.; Oishi,
S.; Fujii, N.; Ohno, H. J. Org. Chem. 2011, 76, 5506. (g) Liu, Q.; Jia,
Y. Org. Lett. 2011, 13, 4810. (h) Umezaki, S.; Yokoshima, S.;
Fukuyama, T. Org. Lett. 2013, 15, 4230. Serotobenine: (i) Koizumi,
Y.; Kobayashi, H.; Wakimoto, T.; Furuta, T.; Fukuyama, T.; Kan, T.
J. Am. Chem. Soc. 2008, 130, 16854. Decursivine: (j) Leduc, A. B.;
Kerr, M. A. Eur. J. Org. Chem. 2007, 237. (k) Sun, D.; Zhao, Q.; Li,
C. Org. Lett. 2011, 13, 5302. (l) Qin, H.; Xu, Z.; Cui, Y.; Jia, Y.
Angew. Chem., Int. Ed. 2011, 50, 4447. (m) Mascal, M.; Modes, K.
V.; Durmus, A. Angew. Chem., Int. Ed. 2011, 50, 4445. (n) Guo, L.;
Zhang, Y.; Hu, W.; Li, L.; Jia, Y. Chem. Commun. 2014, 50, 3299.
Dragmacidin E: (o) Feldman, K. S.; Ngernmeesri, P. Org. Lett. 2005,
7, 5449. (p) Feldman, K. S.; Ngernmeesri, P. Org. Lett. 2011, 13,
5704.
(3) For other examples based on the stepwise construction of the
target skeleton, see: (a) Bur, S. K.; Padwa, A. Org. Lett. 2002, 4,
4135. (b) Greshock, T. J.; Funk, R. L. J. Am. Chem. Soc. 2006, 128,
4946. (c) Huntley, R. J.; Funk, R. L. Org. Lett. 2006, 8, 4775.
(d) Lauchli, R.; Shea, K. J. Org. Lett. 2006, 8, 5287. (e) Trost, B. M.;
McDougall, P. J. Org. Lett. 2009, 11, 3782. (f) Suetsugu, S.;
Nishiguchi, H.; Tsukano, C.; Takemoto, Y. Org. Lett. 2014, 16, 996.
(g) Jiang, B.; Ye, Q.; Fan, W.; Wang, S.-L.; Tu, S.-J.; Li, G. Chem.
Commun. 2014, 50, 6108.
Olefin isomerization of compounds 6a, 2-methyl-substituted
product 6e, and 2-phenyl-substituted product 6g occurred
smoothly following treatment with in situ-generated HI in
CH3CN at room temperature,10b affording the corresponding
3,4-fused tricyclic indole derivatives 7a, 7e, and 7g in excellent
yield. In addition, oxidation of 6a using DDQ afforded
double-bond-conjugated 3,4-fused tricyclic indole derivative 8a
in 94% yield.10h Furthermore, oxidation of 6a with PCC in
CH2Cl2 at room temperature provided ketone derivative 9a in
76% yield.10c These results clearly demonstrate that 3,4-fused
tricyclic 3-alkylidene indoline derivatives are versatile
precursors for the synthesis of functionalized 3,4-fused tricylic
indole derivatives.
In conclusion, we developed a novel Pd-catalyzed cascade
cyclization to produce 3,4-fused tricyclic 3-alkylidene indoline
derivatives. Using allenes tethered to ortho-iodoaniline
derivatives at the meta-position as substrates, an intra-
molecular Heck insertion of the aryl iodide into the allene,
followed by an intramolecular allylic amination, proceeded
sequentially in the presence of 5−10 mol % of Pd catalyst,
producing 3,4-fused tricyclic 3-alkylidene indoline derivatives
in moderate to excellent yield. The reaction adducts were
divergently transformed into three types of functionalized 3,4-
fused tricyclic indole derivatives, successfully demonstrating
the synthetic utility of the developed cascade process. Further
(4) (a) Park, I.-K.; Park, J.; Cho, C.-G. Angew. Chem., Int. Ed. 2012,
51, 2496. (b) Park, J.; Kim, S.-Y.; Kim, J.-E.; Cho, C.-G. Org. Lett.
2014, 16, 178.
C
Org. Lett. XXXX, XXX, XXX−XXX