I
A. A. Fadeeva et al.
Paper
Synthesis
(8) Jasinski, R.; Mikulska, M.; Koifman, O.; Baranski, A. Chem. Het-
erocycl. Compd. 2013, 49, 1188; In Russian: Khim. Geterotsikl.
Soedin. 2013, 1275.
Funding Information
This work was supported by the Russian Science Foundation (grant
19-73-00146).
R
u
si
a
n
S
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
(19-73-0
0
1
4
6)
(9) (a) Raut, V. S.; Marion, J.; Vanthuyne, N.; Roussel, C.;
Constantieux, T.; Bressy, X.; Bonne, D.; Rodriguez, J. J. Am. Chem.
Soc. 2017, 139, 2140. (b) Bao, X.; Rodriguez, J.; Bonne, D. Chem.
Sci. 2020, 11, 403. (c) Becerra, D.; Raimondi, W.; Dauzonne, D.;
Constantieux, T.; Bonne, D.; Rodriguez, J. Synthesis 2017, 49,
195. (d) Raimondi, W.; Dauzonne, D.; Constantieux, T.; Bonne,
D.; Rodriguez, J. Eur. J. Org. Chem. 2012, 6119. (e) Dauzonne, D.;
Royer, R. Synthesis 1988, 339.
Acknowledgment
The authors thank Dr. N. G. Kolotyrkina and Dr. A. O. Chizhov (N. D.
Zelinsky Institute of Organic Chemistry) for recording HRMS.
(10) (a) Huang, K.; Ma, Q.; Shen, X.; Gong, L.; Meggers, E. Asian J. Org.
Chem. 2016, 5, 1198. (b) Dauzonne, D.; Josien, H.; Demerseman,
P. Synthesis 1992, 309.
(11) (a) Ganesh, M.; Namboothiri, I. N. N. Tetrahedron 2007, 63,
11973. (b) Yu, S.-W.; Zhao, S.-H.; Chen, H.; Xu, X.-Y.; Yuan, W.-
C.; Zhang, X.-M. ChemistrySelect 2018, 3, 4827. (c) Romashov, L.
V.; Khomutova, Y. A.; Danilenko, V. M.; Ioffe, S. L.; Lesiv, A. V.
Synthesis 2010, 407.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
References
(12) For the synthesis of -fluoronitroalkenes, see: (a) Motornov, V.
A.; Muzalevskiy, V. M.; Tabolin, A. A.; Novikov, R. A.; Nelyubina,
Y. V.; Nenajdenko, V. G.; Ioffe, S. L. J. Org. Chem. 2017, 83, 5274.
(b) Opekar, S.; Pohl, R.; Beran, P.; Rulisek, L.; Beier, P. Chem. Eur.
J. 2014, 20, 1453. For selected rare examples of -iodo-
nitroalkenes, see: (c) Bresser, T.; Knochel, P. Angew. Chem. Int.
Ed. 2011, 50, 1914; Angew. Chem. 2011, 123, 1954.
(d) Tokumitsu, T.; Hayashi, T. J. Org. Chem. 1985, 50, 1547.
(13) Carroll, F. I.; Kepler, J. A. Can. J. Chem. 1966, 44, 2909.
(14) Kim, J. N.; Son, J. S.; Lee, H. J.; Jung, K. S. Synth. Commun. 1997,
27, 1885.
(1) (a) Ono, N. The Nitro Group in Organic Synthesis; Wiley: New
York, 2001. (b) Sukhorukov, A. Y.; Sukhanova, A. A.; Zlotin, S. G.
Tetrahedron 2016, 72, 6191. (c) Ballini, R.; Marcantoni, E.;
Petrini, M. Nitroalkenes as Amination Tools, In Amino Group
Chemistry: From Synthesis to the Life Sciences; Ricci, A., Ed.;
Wiley: Weinheim, 2008, 93. (d) Ballini, R.; Araujo, N.; Gil, M. V.;
Roman, E.; Serrano, J. Chem. Rev. 2013, 113, 3493. (e) Nair, D. K.;
Kumar, T.; Namboothiri, I. N. N. Synlett 2016, 27, 2425.
(2) (a) Soengas, R. G.; Acurcio, R. C.; Silva, A. M. S. Eur. J. Org. Chem.
2014, 6339. (b) Motornov, V. A.; Ioffe, S. L.; Tabolin, A. A. In
Targets in Heterocyclic Systems, Vol. 23; Attanasi, O. A.; Merino,
P.; Spinelli, D., Ed.; Italian Chemical Society: Rome, 2019, 237–
260. (c) Politanskaya, L. V.; Selivanova, G. A.; Panteleeva, E. V.;
Tretyakov, E. V.; Platonov, V. E.; Nikul’shin, P. V.; Vinogradov, A.
S.; Zonov, Y. V.; Karpov, V. M.; Mezhenkova, T. V.; Vasilyev, A. V.;
Koldobskii, A. B.; Shilova, O. S.; Morozova, S. M.; Burgart, Y. V.;
Shchegolkov, E. V.; Saloutin, V. I.; Sokolov, V. B.; Aksinenko, A.
Y.; Nenajdenko, V. G.; Moskalik, M. Y.; Astakhova, V. V.;
Shainyan, B. A.; Tabolin, A. A.; Ioffe, S. L.; Muzalevskiy, V. M.;
Balenkova, E. S.; Shastin, A. V.; Tyutyunov, A. A.; Boiko, V. E.;
Igumnov, S. M.; Dilman, A. D.; Adonin, N. Y.; Bardin, V. V.;
Masoud, S. M.; Vorobyeva, D. V.; Osipov, S. N.; Nosova, E. V.;
Lipunova, G. N.; Charushin, V. N.; Prima, D. O.; Makarov, A. G.;
Zibarev, A. V.; Trofimov, B. A.; Sobenina, L. N.; Belyaeva, K. V.;
Sosnovskikh, V. Y.; Obydennov, D. L.; Usachev, S. A. Russ. Chem.
Rev. 2019, 88, 425; Usp. Khim. 2019, 88, 425.
(15) Liu, L.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Org. Lett. 2014, 16,
436.
(16) (a) Dauzonne, D.; Demerseman, P. Synthesis 1990, 66.
(b) Dauzonne, D.; Royer, R. Synthesis 1987, 1020.
(17) (a) Fang, W.-Y.; Ravindar, L.; Rakesh, K. P.; Manukumar, H. M.;
Shantharam, C. S.; Alharbi, N. S.; Qin, H.-L. Eur. J. Med. Chem.
2019, 173, 117. (b) Smith, B. R.; Eastman, C. M.; Njardarson, J. T.
J. Med. Chem. 2014, 57, 9764.
(18) (a) Steinhilber, D.; Schubert-Zsilavecz, M. Pharm. Unserer Zeit
2007, 36, 108. (b) Wilson, T.; Brown, P. J.; Sternbach, D. D.;
Henke, B. R. J. Med. Chem. 2000, 43, 527. (c) Liu, Z.-M.; Hu, M.;
Chan, P.; Tomlinson, B. Expert Opin. Invest. Drugs 2015, 24, 611.
(d) Giembycz, M. A. Expert Opin. Invest. Drugs 2001, 10, 1361.
(e) Card, G. L.; England, B. P.; Suzuki, Y.; Fong, D.; Powell, B.; Lee,
B.; Luu, C.; Tabrizizad, M.; Gillette, S.; Ibrahim, P. N.; Artis, D. R.;
Bollag, G.; Milburn, M. V.; Kim, S. H.; Schlessinger, J.; Zhang, K. Y.
J. Structure 2004, 12, 2233.
(19) For chloronium cations, see: (a) Olah, G. A.; Westerman, P. W.;
Melby, E. G.; Mo, Y. K. J. Am. Chem. Soc. 1974, 96, 3565. (b) Ohta,
B. K.; Hough, R. E.; Schubert, J. W. Org. Lett. 2007, 9, 2317. For
Ph3PO-promoted dichlorination of alkenes with SO2Cl2, see:
(c) Zeng, X.; Gong, C.; Zhang, J.; Xie, J. RSC Adv. 2016, 6, 85182.
(20) We can also note that hydrolysis of SO2Cl2 (e.g., by traces of
water or alcohols, that are often used for the crystallization of
aromatic nitroalkenes) should result in release of HCl, thus acti-
vating the reaction.
(3) (a) Motornov, V. A.; Tabolin, A. A.; Novikov, R. A.; Nelyubina, Y.
V.; Ioffe, S. L.; Smolyar, I. S.; Nenajdenko, V. G. Eur. J. Org. Chem.
2017, 6851. (b) Jana, S.; Adhikari, S.; Cox, M. R.; Roy, S. Chem.
Commun. 2020, 56, 1871.
(4) (a) Motornov, V. A.; Tabolin, A. A.; Nelyubina, Y. V.; Nenajdenko,
V. G.; Ioffe, S. L. Org. Biomol. Chem. 2019, 17, 1442.
(b) Motornov, V. A.; Tabolin, A. A.; Nelyubina, Y. V.; Nenajdenko,
V. G.; Ioffe, S. L. Org. Biomol. Chem. 2020, 18, 1436.
(5) (a) Aldoshin, A. S.; Tabolin, A. A.; Ioffe, S. L.; Nenajdenko, V. G.
Eur. J. Org. Chem. 2019, 4384. (b) Vara, B. A.; Johnston, J. N. J. Am.
Chem. Soc. 2016, 138, 13794.
(21) For activation of halogenating agents, see for example:
(a) Galabov, B.; Nalbantova, D.; Schleyer, P. V. R.; Schaefer, H. F.
III. Acc. Chem. Res. 2016, 49, 1191. (b) Cresswell, A. J.; Eey, S. T.-
C.; Denmark, S. E. Angew. Chem. Int. Ed. 2015, 54, 15642; Angew.
Chem. 2015, 127, 15866.
(6) (a) Bauvois, B.; Puiffe, M.-L.; Bongui, J.-B.; Paillat, S.; Monneret,
C.; Dauzonne, D. J. Med. Chem. 2003, 46, 3900. (b) Pechalrieu, D.;
Dauzonne, D.; Arimondo, P. B.; Lopez, M. Eur. J. Med. Chem.
2020, 186, 111829.
(7) Deng, X.; Liang, J. T.; Mani, N. S. Eur. J. Org. Chem. 2014, 410.
© 2020. Thieme. All rights reserved. Synthesis 2020, 52, A–J