10.1002/adsc.201701316
Advanced Synthesis & Catalysis
100 °C for 18 h. The volatiles were removed and the crude
was purified by flash column chromatography using a
hexane/AcOEt mixture.
[6] For a recent review, see: D. B. Bagal, B. M. Bhanage,
Adv. Synth. Catal. 2015, 357, 883-900.
General Procedure for the reductive amination of
aldimines
[7] For a recent review, see: A. Volkov, F. Tinnis, T.
Slagbrand, P. Trillo, H. Adolfsson, Chem. Soc. Rev.
2016, 45, 6685-6697.
3 Å MS (400 mg), the aldehyde (0.5 mmol, 1 equiv.) and
the amine (0.75 mmol, 1.5 equiv.) were dissolved in dry
toluene (0.5 mL) and the mixture was stirred for 1 h at
100 °C. Meanwhile, in another vessel, pre-catalyst 1 (9.6
mg, 0.025 mmol, 0.05 equiv.) and Me3NO (1.9 mg, 0.025
mmol, 0.05 equiv.) were dissolved in dry iPrOH (0.25 mL).
The activated catalyst solution was dispensed into the
vessel containing the imine, followed by dry iPrOH (1.2
mL). The reaction vessel was sealed and stirred in a pre-
heated oil bath at 100 °C for 18 h. The volatiles were
removed and the crude was purified by flash column
chromatography using a hexane/AcOEt mixture.
[8] For a recent review, see: D. Amantini, F. Fringuelli, F.
Pizza, L. Vaccaro, Org. Prep. Proc. Int. 2002, 34,
109-147.
[9] For a review, see: H. K. Kadam, S. G. Tilve, RSC Adv.
2015, 5, 83391-83407.
[10] For a review in imine CTH, see: M. Wills, in Modern
Reduction Methods, Wiley-VCH, 2008, pp. 271-296.
[11] For recent examples of imine CTH promoted by
precious metals, see: a) B. Václavíková Vilhanová, A.
Budinská, J. Václavík, V. Matoušek, M. Kuzma, L.
Červený, Eur. J. Org. Chem. 2017, 2017, 5131-5134;
b) S. Ibáñez, M. Poyatos, E. Peris, ChemCatChem
2016, 8, 3790-3795; c) V. S. Shende, S. K. Shingote,
S. H. Deshpande, A. A. Kelkar, ChemistrySelect 2016,
1, 2221-2224; d) H.-J. Pan, Y. Zhang, C. Shan, Z. Yu,
Y. Lan, Y. Zhao, Angew. Chem. Int. Ed. 2016, 55,
9615-9619; Angew. Chem. 2016, 128, 9767-9771.
General Procedure for the reductive amination of
ketimines
3 Å MS (400 mg), the ketone (0.5 mmol, 1 equiv.), the
amine (0.75 mmol, 1.5 equiv.) and TFA (4 μL, 0.05 mmol,
0.1 equiv., dispensed as a stock solution in toluene) were
dissolved in dry toluene (final total volume: 0.5 mL) and
stirred for 2 h at 100 °C. Meanwhile, in another vessel, pre-
catalyst 1 (9.6 mg, 0.025 mmol, 0.05 equiv.) and Me3NO
(1.9 mg, 0.025 mmol, 0.05 equiv.) were dissolved in dry
iPrOH (0.25 mL). Freshly distilled DIPEA (13 μL, 0.075
mmol, 0.15 equiv.) and then the activated catalyst solution
were dispensed into the vessel containing the imine,
followed by dry iPrOH (1.2 mL). The reaction vessel was
sealed and stirred at 100 °C for 18 h. The volatiles were
removed and the crude was purified by flash column
chromatography using hexane/AcOEt mixture.
[12] a) A. M. Faísca Phillips, A. J. L. Pombeiro, Org.
Biomol. Chem. 2017, 15, 2307-2340; b) S. Li, G. Li,
W. Meng, H. Du, J. Am. Chem. Soc. 2016, 138,
12956-12962.
[13] For a recent review, see: Y.-Y. Li, S.-L. Yu, W.-Y.
Shen, J.-X. Gao, Acc. Chem. Res. 2015, 48, 2587-
2598.
Acknowledgements
L. P. thanks the Dipartimento di Chimica, Università degli Studi
di Milano, for financial support (Piano di Sostegno alla Ricerca
2015-2017 – Action B). We thank Prof. Albrecht Berkessel for
inspiring discussions.
[14] For a recent review on iron catalysis, see: I. Bauer,
H.-J. Knölker, Chem. Rev. 2015, 115, 3170-3387.
[15] a) D. Brenna, S. Rossi, F. Cozzi, M. Benaglia, Org.
Biomol. Chem. 2017, 15, 5685-5688; b) T.-T. Thai, D.
S. Mérel, A. Poater, S. Gaillard, J.-L. Renaud, Chem.
Eur. J. 2015, 21, 7066-7070; c) S. Zhou, S. Fleischer,
H. Jiao, K. Junge, M. Beller, Adv. Synth. Catal. 2014,
356, 3451-3455; d) P. O. Lagaditis, P. E. Sues, J. F.
Sonnenberg, K. Y. Wan, A. J. Lough, R. H. Morris, J.
Am. Chem. Soc. 2014, 136, 1367-1380; e) S. Moulin,
H. Dentel, A. Pagnoux-Ozherelyeva, S. Gaillard, A.
Poater, L. Cavallo, J.-F. Lohier, J.-L. Renaud, Chem.
Eur. J. 2013, 19, 17881-17890; f) S. Fleischer, S.
Zhou, S. Werkmeister, K. Junge, M. Beller, Chem.
Eur. J. 2013, 19, 4997-5003; g) D. S. Mérel, M. Elie,
J.-F. Lohier, S. Gaillard, J.-L. Renaud, ChemCatChem
2013, 5, 2939-2945; h) A. Pagnoux-Ozherelyeva, N.
Pannetier, M. D. Mbaye, S. Gaillard, J. L. Renaud,
Angew. Chem. Int. Ed. 2012, 51, 4976-4980; Angew.
Chem. 2012, 124, 5060-5064; i) S. Zhou, S. Fleischer,
K. Junge, M. Beller, Angew. Chem. Int. Ed. 2011, 50,
5120-5124; Angew. Chem. 2011, 123, 5226 -5230.
References
[1] a) S. A. Lawrence, Amines: Synthesis, Properties and
Applications, Cambridge University Press, Cambridge,
2006; b) A. Ricci, Amino Group Chemistry: From
Synthesis to the Life Sciences, Wiley-VCH, Weinheim,
2008.
[2] A. Ricci (Ed.), Modern Amination Methods, Wiley-
VCH, Weinheim, 2000.
[3] Handbook of Homogeneous Hydrogenation (Eds.: J.
G. de Vries, C. J. Elsevier), Wiley-VCH, Weinheim,
2007.
[4] D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621-
6686.
[5] For recent reviews, see: a) C. Claver, E. Fernández, in
Modern Reduction Methods, Wiley-VCH, 2008, pp.
235-269; b) P.-G. Echeverria, T. Ayad, P. Phansavath,
V. Ratovelomanana-Vidal, Synthesis 2016, 48, 2523-
2539.
[16] For
a
tandem nitro group reduction-imine
hydrogenation, see: T. Stemmler, A.-E. Surkus, M.-M.
Pohl, K. Junge, M. Beller, ChemSusChem 2014, 7,
3012-3016.
4
This article is protected by copyright. All rights reserved.