A.S. Abu-Surrah et al. / European Journal of Medicinal Chemistry 45 (2010) 471–475
475
C24H24Cl2N10O4PdCl2 $ 3H2O: C, 35.21; H, 3.69; N, 17.11. IR (KBr,
cmꢁ1):
¼ 3416 (mbr), 3250 (m), 1629 (s), 1541 (m), 1455 (m), 1373
(s), 1235 (m),1148 (w), 1086 (w), 753 (m), 622 (w), 518 (w). 1H-NMR
Acknowledgements
n
Financial support by the Hashemite University is gratefully
acknowledged. The authors would like to thank Mr. Mohanad
Masad for carrying out the NMR measurements.
(ppm):
d
¼ 11.1 (s, NH), 8.50 (s, HC]N), 7.95–7.51 (m, Harom), 4.00
(s, NeCH3), 2.35 (s, CeCH3). 13C-NMR (ppm):
d
¼ 14.5, 98.0, 128.9,
129.5, 133.5, 134.7, 142.5, 143.9, 145.6.
3.1.3.4. PdCl2(OHeBDH)2 (13). Yield of 0.27 g (57%). M.p. (dec.)
290 ꢀC. Found: C, 39.94; H, 3.94; N, 19.55%. Anal. Calc. for
C24H26N10O6PdCl2: C, 39.60; H, 3.60; N, 19.24. IR (KBr, cmꢁ1):
References
[1] A.S. Abu-Surrah, M. Kettunen, Curr. Med. Chem. 13 (2006) 1337–1357.
[2] (a) F.Z. Wimmer, S. Wimmer, P. Castan, S. Cros, N. Johnson, E. Colacio-Rodrigez,
Anticancer Res. 9 (1989) 791–794;
(b) G. Zhao, H. Lin, P. Yu, H. Sun, S. Zhu, X. Su, Y. Chen, J. Inorg, Biochem. 73
(1999) 145–149.
[3] A.S. Abu-Surrah, H.H. Al-Sa’doni, M.Y. Abdalla, Cancer Therapy
1–10.
[4] H. Mansuri-Torshizi, T.S. Srivastava, H.K. Parekh, M.P. Chitnis, J. Inorg, Biochem.
45 (1992) 135–148.
[5] A.S. Abu-Surrah, T.A.K. Al-Allaf, L.J. Rashan, M. Klinga, M. Leskela¨, Eur. J. Med.
Chem. 37 (2002) 919–922.
n
¼ 3363 (mbr), 3266 (m), 1626 (s), 1537 (m), 1450 (m), 1371 (s),
1229 (m), 1146 (w), 1081 (w), 759 (m), 629 (w), 532 (w). 1H-NMR
(ppm):
d
¼ 11.1 (s, NH), 8.47 (s, HC]N), 7.59, ꢁ7.48 (m, Harom), 4.00
(s, eCH3), 2.34 (s, CeCH3). 13C-NMR (ppm):
d
¼ 14.5, 116.3, 125.5,
6 (2008)
129.1, 142.9, 143.8, 147.5, 159.8.
3.2. Clonogenic cell survival experiments
[6] Y.-P. Ho, K.K.W. To, S.C.F. Au-Yeung, X. Wang, G. Lin, X. Han, J. Med, Chem. 44
(2001) 2065–2068.
[7] (a) T.A.K. Al-Allaf, L.J. Rashan, Eur. J. Med. Chem. 33 (1998) 817–820;
(b) T.A.K Al-Allaf, L.J. Rashan, M.T. Ayoub, M.H. Adday, U.K. Patent No. 2 304
712/ (1997).
[8] C. Barja-Fidalgo, I.M. Fierro, A.C.B. Lima, E.T. Da Silva, C.C. De Amorim,
E.J. Barreiro, J. Pharm, Pharmacol. 51 (1999) 703–707.
[9] I.A. da Silveira, L.G. Paulo, A.L. de Miranda, S.O. Rocha, A.C.C. Freitas,
E.J. Barreiro, J. Pharm, Pharmacol., 45 (1993) 646–649.
[10] A.C.C. Freitas, E.J. Barreiro, A.C.B. Lima, E.F.R. Pereira, A. Nuno, Quimica Nova 18
(1995) 138–143.
SQ20B and SCC-25 human head and neck squamous carcinoma
cells were used in our study. SQ20B cells were maintained in Dul-
becco’s modified Eagle’s medium (DMEM), containing 4 mM
L-glutamine, 1 mM sodium pyruvate, 1.5 g/l sodium bicarbonate,
and 4.5 g/l glucose with 10% fetal bovine serum (FBS; Hyclone,
Logan, UT, USA). SCC cells were maintained in DMEM-Ham’s F-12,
0.4 mg/ml of hydrocortisone, and 10% FBS medium. Cultures were
maintained in 5% CO2 and humidified in a 37 ꢀC incubator.
Attached cells from experimental dishes were trypsinized with
1 ml trypsin-EDTA (CellGro, Herndon, VA, USA) and inactivated with
medium containing 10% FBS (Hyclone, USA). The cells were diluted
and counted using a heme cytometer. Cells were plated at low
density (300–1000 per plate), and clones were allowed to grow in
a humidified 5% CO2, 37 ꢀC environment for 14 days in complete
medium, in the presence of 0.1% gentamicin. Cells were fixed with
70% ethanol and stained with Coomassie blue for analysis of clono-
genic cell survival as previously described [20]. Individual assays
were performed with multiple dilutions in at least three cloning
dishes per data point, repeated in at least three separate experiments.
Drugs were added to cells at final concentrations of 0.2 and
[11] (a) G.W. Bushnell, K.R. Dixon, D.T. Eadie, S.R. Stobart, Inorg. Chem. 20 (1981)
1545–1552;
(b) M.C. Carrio´ n, A. Dı´az, A. Guerrero, F.A. Jalo´n, B.R. Manzano, A. Rodrı´guez,
New J. Chem. 26 (2002) 305–312;
(c) E. Budzise, M. Malecka, B. Nawrot, Tetrahedron 60 (2004) 1749–1759.
[12] K. Lappalainen, K. Yliheikkila¨, A.S. Abu-Surrah, M. Kalmi, M. Polamo,
M. Leskela¨, T. Repo, Z. Anorg, Allgam. Chem. 631 (2005) 763–768.
[13] (a) A.S. Abu-Surrah, M. Kettunen, K. Lappalainen, U. Piironen, M. Klinga,
M. Leskela, Polyhedron 21 (2002) 27–31;
(b) A.S. Abu-Surrah, Orient. J. Chem. 19 (2003) 331–336.
[14] A.S. Abu-Surrah, T.A.K. Al-Allaf, M. Klinga, M. Leskela¨, Polyhedron 22 (2003)
1529–1534.
[15] (a) T.A.K. Al-Allaf, L.J. Rashan, A.S. Abu-Surrah, R. Fawzi, M. Steiman, Transit.
Met. Chem. 23 (1998) 403–406;
(b) T.A.K. Al-Allaf, M.T. Ayoub, L.J. Rashan, J. Inorg, Biochem. 38 (1990) 47–56.
[16] S.M. Ben Saber, A.A. Maihub, S.S. Hudere, M.M. El-ajaily, Microchem. J., 81
(2005) 191–194.
0.5 mM palladium(II) complexes (11, 12, and 13) or cisplatin. All
stock solutions were dissolved and diluted in PBS containing 10%
DMSO, and the required volume was added directly to complete
cell culture medium on cells to achieve the desired final concen-
tration. All cells were placed in a 37 ꢀC incubator and harvested at
the time points indicated.
[17] D.F. Schriver, P.W. Atkins, Inorganic Chemistry, third ed. Oxford, NY, 2001.
[18] D.M. Mattson, I.M. Ahmad, D. Dayal, A.D. Parsons, N. Aykin-Burns, L. Li,
K.P. Orcutt, D.R. Spitz, K.F. Dornfeld, A.L. Simons, Free Radic. Biol. Med. 46
(2008) 232–237.
[19] J.R. Doyle, P.E. Slade, H.B. Jonassen, Inorg. Synth. 6 (1960) 216.
[20] D. Spitz, R. Malcolm, R. Robert, Biochem. J., 267(1009) 453–459.