SCHEME 1. Insertion of Carbenes versus Insertion of CO
Cyclization Reactions Involving
Palladium-Catalyzed Carbene Insertion into Aryl
Halides
Romas Kudirka and David L. Van Vranken*
Chemistry Department, 1102 Natural Sciences 2, UniVersity
of California, IrVine, California 92697-2025
daVid.VV@uci.edu
produce indane ring systems.5 In these reactions, the indanone
ring is generated through CO insertion followed by insertion
of a pendant olefin. The resulting intermediate can then
efficiently proceed to product through either ꢀ-hydride elimina-
tion (5) or a second CO insertion (6), depending on the
conditions (Scheme 2). Indanes are present in the drug Aricept6
and a wide range of natural products7 and bioactive compounds.8
ReceiVed January 30, 2008
SCHEME 2. Single and Double Insertion of CO
Palladium is shown to catalyze the insertion of trimethylsi-
lylmethylene into aryl halides, leading to benzylpalladium
intermediates that cyclize to give indenylsilanes through
carbopalladation of pendant alkenes or allenes. Allylsilanes
generated through these processes are susceptible to pro-
todesilylation in situ.
There is growing interest in palladium-catalyzed reactions
that insert carbene fragments derived from diazo compounds.1
Diazo compounds like trimethylsilyldiazomethane (TMSD) are
convenient precursors to metal carbenes.2 Using TMSD, Sole
and co-workers showed that trimethylsilylmethylene inserts
readily into palladium-carbon bonds in analogy to insertion
of CO (Scheme 1).3
The insertion of trimethylsilylmethylene into a palladium-
carbon bond can be envisioned to occur through migration of
the arene to the empty orbital of the carbene. Insertion of
trimethylsilylmethylene is particularly exciting because it
introduces the new carbon atom as a stereogenic center, whereas
CO insertion does not. A particular advantage of inserting
trimethylsilylmethylenes into arene-palladium bonds is that it
generates a benzyltrimethylsilyl functional group, which can be
nucleophilically activated by catalytic fluoride.4
We sought to explore a version of the Negishi carbonylative
cyclization reaction in which trimethylsilylmethylene takes the
place of CO (Scheme 3). Little is known about the ability of
carbene insertion to compete with other important processes like
olefin insertion (carbopalladation) or ꢀ-hydride elimination.9 To
increase the utility of TMSD in palladium-catalyzed reactions
we set out to study the competition between carbene insertion
and other processes like carbopalladation and ꢀ-hydride elimi-
nation in the context of a palladium-catalyzed indane formation
reaction.
(5) (a) Negishi, E.-I.; Coperet, C.; Ma, S.; Mita, T.; Sugihara, T.; Tour, J. M.
J. Am. Chem. Soc. 1996, 118, 5904–5918. (b) Wu, G.-Z.; Lamaty, F.; Negishi,
E.-I. J. Org. Chem. 1989, 54, 2507–2508.
(6) Sugimoto, H.; Iimura, Y.; Yamanishi, Y.; Yamatsu, K. J. Med. Chem.
1995, 38, 4821–4829.
Negishi and co-workers have shown that palladium can
catalyze the carbonylative Heck cyclization of 2-iodoarenes to
(7) (a) Kobayashi, A.; Koshimizu, K. Agric. Biol. Chem. 1980, 44, 393–
398. (b) Sheridan, H.; Lemon, S.; Frankish, N.; McArdle, P.; Higgins, T.; James,
J. P.; Bhandari, P. Eur. J. Med. Chem. 1990, 25, 603–608. (c) Bohlmann, F.;
Zdero, C.; Le Van, N. Phytochemistry 1977, 18, 99–102.
(1) (a) Greenman, K. L.; Carter, D. S.; Van Vranken, D. L. Tetrahedron
2001, 57, 5219–5225. (b) Ihara, E.; Haida, N.; Iio, M.; Inoue, K. Macromolecules
2003, 36, 36–41. (c) Devine, S. K. J.; Van Vranken, D. L. Org. Lett. 2007, 9,
2047–2049. (d) Ihara, E.; Kida, M.; Fujioka, M.; Haida, N.; Itoh, T.; Inoue, K.
J. Polym. Sci., A: Polym. Chem. 2007, 45, 1536–1545.
(8) (a) Tanaka, Y.; Niwa, S.; Nishioka, H.; Yamanaka, T.; Torizuki, M.;
Yoshinaga, K.; Kobayashi, N.; Ikeda, Y.; Arai, H. J. Med. Chem. 1994, 37,
2071–2078. (b) Reiter, L. A.; Melvin, L. S., Jr.; Crean, G. L.; Showell, H. J.;
Koch, K.; Biggers, M. S.; Cheng, J. B.; Breslow, R.; Conklyn, M. J.; Farrell,
C. A.; Hada, W. A.; Laird, E. R.; Martin, J. J.; Miller, G. T.; Pillar, J. S. Bioorg.
Med. Chem. Lett. 1997, 7, 2307–2312. (c) Auvray, P.; Moslemi, S.; Sourdaine,
P.; Galopin, S.; Séralini, G.-E.; Enguehard, C.; Dallemagne, P.; Bureau, R.;
Sonnet, P.; Rault, S. Eur. J. Med. Chem. 1998, 33, 451–462. (d) Murthy, A. R.;
Wyrick, S. D.; Hall, I. H. J. Med. Chem. 1985, 28, 1591–1596. (e) Duax, W. L.;
Swenson, D. C.; Strong, P. D.; Korach, K. S.; McLachlan, J.; Metzler, M. Mol.
Pharm. 1984, 26, 520–525.
(2) (a) Böring, M.; Brandt, C. D.; Stellwag, S. Chem. Commun. 2003, 2344–
2345. (b) Karlou-Eyrisch, K.; Mueller, B. K. M.; Herzig, C.; Nuyken, O. J.
Organomet. Chem. 2000, 606, 3–7. (c) Stumpf, A. W.; Saive, E.; Demonceau,
A.; Noels, A. F. J. Chem. Soc., Chem. Commun. 1995, 1127–1128.
(3) Sole, D.; Vallverdu, L.; Solans, X.; Font-Bardia, M.; Bonjoch, J.
Organometallics 2004, 23, 1438–1447.
(4) (a) Bennetau, B.; Dunogues, J. Tetrahedron Lett. 1983, 24, 4217–4218.
(b) Zhang, W.-X.; Ding, C.-H.; Luo, Z.-B.; Hou, X.-L.; Dai, L.-X. Tetrahedron
Lett. 2006, 47, 8391–8393. (c) Pilcher, A. S.; DeShong, P. J. Org. Chem. 1996,
61, 6901–6905.
(9) For interesting recent examples, see: Peng, C.; Cheng, J. J.; Wang, J. B.
J. Am. Chem. Soc. 2007, 129, 8708–8709. (b) Peng, C.; Wang, Y.; Wang, J.
J. Am. Chem. Soc. 2008, 130, 1566–1567.
10.1021/jo800109d CCC: $40.75
Published on Web 03/28/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 3585–3588 3585