372 Organometallics, Vol. 19, No. 4, 2000
Communications
Sch em e 2. Syn th esis of Selen ola tovin ylid en e
Com p lexes of Ru th en iu m (II)a
F igu r e 1. Molecular structure of 1. Selected bond lengths
(Å) and angles (deg): Ru-C(1) ) 1.769(5), Ru-Cl(1) )
2.3228(13), Ru-Cl(2) ) 2.3349(13), Ru-P(1) ) 2.3854(11),
Ru-P(2) ) 2.3985(12); C(1)-Ru-Cl(1) ) 104.7(2), C(1)-
Ru-Cl(2) ) 106.2(2), Cl(1)-Ru-Cl(2) ) 148.89(6), C(1)-
Ru-P(1) ) 90.8(2), Cl(1)-Ru-P(1) ) 86.42(4), Cl(2)-Ru-
P(1) ) 89.82(4), C(1)-Ru-P(2) ) 94.9(2), Cl(1)-Ru-
P(2) ) 88.29(5), Cl(2)-Ru-P(2) ) 92.40(5), P(1)-Ru-
P(2) ) 173.07(5).
C(2) is of primary interest, and the following points are
noted: (i) the coordination is trigonal (angle sum
359.6°); (ii) the Se-C(2) bond length of 1.917(5) Å is
significantly shorter than that to C(3) (2.017(11) Å),
indicating an appreciable degree of multiple bonding in
the former (Scheme 1). This perhaps accounts in part
for the lack of conjugation of the phenyl substituent into
the RudCdC cumulene system, which is rotated by ca.
21° out of the C(1)-C(2)-Se plane.
The coordinative unsaturation of the ruthenium
center in 1 is reflected in reactions with potential
ligands: Although simple 1:1 adducts might be expected
to arise on treatment with the simple nitrogen donor
ligands γ-picoline and tert.butylamine, these are not
observed. Rather, one phosphine is also substituted to
provide the coordinatively saturated octahedral com-
plexes [RuCl2{dCdC(SeiPr)Ph}(L)2(PPh3)] (L ) NC5H4-
Me-4 (2a ), NH2CMe3 (2b)). The picoline derivative10 is
moderately stable, while attempted isolation of the tert-
butylamine complex results primarily in reversion to 1.
In a similar manner, no tractable product resulted from
the treatment of 1 with TMEDA, although a reaction
ensued. The identity and stereochemistry of these
complexes follows unambiguously from spectroscopic
a
Legend: pic ) γ-picoline, CA ) CO, CNC6H3Me2-2,6,
bipy ) 2,2′-bipyridyl, Cp ) η-C5H5.
1.769(5) Å lying at the short end of reported ruthenium
vinylidenes,2 the majority of which are, however, cat-
ionic and/or coordinatively saturated. The vinylidene
ligand is essentially linear with Ru-C(1)-C(2) ) 175.2-
(4)°, and the C(1)-C(2) bond length at 1.329(8) Å
suggests multiple-bond character. The substitution at
(10) Selected spectroscopic data for new complexes (satisfactory
elemental microanalysis obtained unless otherwise indicated; NMR
data: δ, CDCl3, 25 °C, 13C phosphine and phenyl resonances omitted.
IR data: νRudCdC in cm-1, Nujol. FAB-MS data: m/z, nba matrix,
positive ion. 1: 1H NMR 1.10 (d, 3J ) 7.4 Hz, 6 H, CH3), 2.77 (sept, 1
H, CHMe2), 6.7-8.0 (m, 35 H, C6H5); 13C{1H} NMR 320.4 (t, 2J ) 16.2,
RudC), 111.2 (t, 3J ) 5.4, RudCdC), 34.9 (s, CHMe2), 23.7 (s, CH3);
31P{1H} NMR 30.3; IR 1600 m, 1587 s; FAB-MS 920 [M]+. 2a : 1H NMR
1.03 (d, 6 H, 3J ) 12.9 Hz, CHCH3), 2.26 (s, 6 H, CH3), 2.77 (sept, 1 H,
CHMe2), 6.7-8.6 (m, 23 H, C6H5, C5H4N); 13C{1H} NMR 328.6 (d,
2J ) 21.6 Hz, RudC), 111.5 (s, RudCdC), 35.1 (s, CHMe2), 23.6 (s,
CHCH3), 20.8 (s, NC5H4CH3); 31P{1H} NMR 41.7; IR 1618 m; FAB-
MS 658 [M - 2pic]+. 3: 1H NMR 1.31 (d, 6 H, 3J ) 6.9 Hz, CH3), 3.19
(sept, 1 H, CHMe2), 7.0-9.74 (C6H5 + bipy);13C{1H} NMR: 333.0 (d,
2J ) 24.8 Hz, RudC), 113.8 (s, RudCdC), 35.7 (s, CHMe2), 24.3 (s,
CH3); 31P{1H} NMR 39.0; IR 1620 m; FAB-MS 814 [M]+. 4: 1H NMR
1.04 (d, 6 H, 3J ) 7.4 Hz, CH3), 1.0-2.7 (m, Cy), 2.89 (sept, 1 H,
CHCH3), 6.7-7.8 (m, 5 H, C6H5); 13C{1H} NMR 320.4 (dd, 2J ) 15.3
Hz, RudC), 110.3 (dd, 3J ) 5.5 Hz, RudCdC), 34.4 (s, CHMe2), 23.7
(s, CH3); 31P{1H} NMR 29.6, 28.2 (2J ) 357.9 Hz); IR 1580, 1562 m;
FAB-MS 938 [M]+. 5a -BPh4: 1H NMR 1.31 (d, 6 H, 3J ) 7.6 Hz, CH3),
2.96 (sept, 1 H, CHMe2), 4.98 (s, 5 H, C5H5), 6.8-8.7 (m, 55 H, C6H5);
13C{1H} NMR 324.1 (t, 3J ) 15.1 Hz, RudC), 117.8 (s, RudCdC), 94.2
(s, C5H5), 35.8 (s, CHMe2), 24.0 (s, CH3); 31P{1H} NMR 41.4; IR 1621
m; FAB-MS 915 [M]+. 5b-PF6: 1H NMR 5.03 (s, 5H, C5H5), 6.7-8.0
(m, 40 H, C6H5); 13C{1H} NMR 324.2 (t, 2J ) 30.0 Hz, RudC) 117.7 (s,
RudCdC), 94.4 (C5H5); 31P{1H} NMR 41.2; IR 1625 m; FAB-MS 949
[M]+.
(11) Crystal data for 1: C47H42P2Cl2SeRu, Mr ) 919.7, triclinic, space
group P1h (No. 2), a ) 10.113(1) Å, b ) 12.296(1) Å, c ) 18.827(2) Å,
R ) 100.02(1)°, â ) 90.98(1)°, γ ) 114.05(1)°, V ) 2095.1(3) Å3, Z ) 2,
Dc ) 1.458 g cm-3, µ(Cu KR) ) 61.6 cm-1, F(000) ) 932, T ) 293 K;
deep red prisms, 0.43 × 0.43 × 0.20 mm, Siemens P4/PC diffractome-
ter, ω-scans, 6112 independent reflections. The structure was solved
by direct methods, and the major-occupancy non-hydrogen atoms were
refined anisotropically using full-matrix least squares based on F2 to
give R1 ) 0.046, wR2 ) 0.108 for 5070 independent, observed,
absorption-corrected reflections (|Fo| > 4σ(|Fo|), 2θ ) 120°) and 407
parameters.
(12) Buriez, B.; Burns, I. D.; Hill, A. F.; White, A. J . P.; Williams,
D. J .; Wilton-Ely, J . D. E. T. Organometallics 1999, 18, 1504.