10.1002/anie.202003359
Angewandte Chemie International Edition
COMMUNICATION
proceeds with high yields; however, when the light was omitted,
the desired product was not observed (Scheme 5, B),
highlighting that light is required to enable the C-O coupling,
regardless of the pre-catalyst being Ni(II) or Ni(0).[15]
Acknowledgements
This research was supported by the National Natural Science
Foundation of China (21871171) and the 111 project (B14041).
Next, the Ni(II) complex A was irradiated under the long-
wave UV light for 30 min in the absence of substrates and then
the irradiation was stopped. Following introducing the substrates
and carrying out the reaction in the dark for 12 h, the
corresponding product was obtained with a low yield of 35%. A
somewhat higher yield was seen when the initial irradiation was
extended to 60 min (Scheme 5, C). EPR (electron paramagnetic
resonance) analysis of the irradiated A (in the absence of
substrates) revealed a signal with g∥=2.25 and g⊥=2.07 (SI,
Figure 8),[15] which indicates the formation of a d9 Ni(I)
species.[19,20] Moreover, when the Ni(I) complex, prepared in situ
from the comproportionation of catalyst A and Ni(dtbbpy)(cod) by
following the procedure of Nocera and co-workers,[19] was used
as catalyst, the desired product was obtained only in 16% yield
under thermal conditions (Scheme 5, D). The EPR signal of the
resulting Ni species is similar to that of the irradiated Ni(II)
catalyst A (SI, Figure S9).[15]
The observations above suggest that the etherification in
question involves Ni(I) species and light is required throughout
to achieve high product yields. On the basis of these results and
the studies of Doyle, Scholes and Nocera et al,[14,19] a simplified
mechanistic pathway is tentatively suggested for the
etherification under question (Scheme 6). Irradiation of A at 390-
395 nm would excite the Ni(II) complex to a 3MLCT state[21] that
probably decays to a long-lived 3d-d state, which could then
undergo homolysis of the nickel-carbon bond, generating Ni(I)
and aryl radicals.[14d] The former could then react with the aryl
halide to generate a Ni(III)-Ar intermediate, which would undergo
facile reductive elimination upon ligand exchange with the
alcohol (presumably facilitated by DBU),[22] affording the coupled
ether product while regenerating the Ni(I). Continuous irradiation
is necessary. This is probably due to the formation of off-cycle,
catalytically inactive Ni(II) from the comproportionation of Ni(III)
and Ni(I),[19a] which requires irradiation to convert back to the
active Ni(I).[23,24]
Keywords: etherification · aryl electrophiles · Nickel(II)aryl halides ·
nickel catalysis · photocatalysis·
[1] a) S. Enthaler, A. Company, Chem. Soc. Rev. 2011, 40, 4912; b) G.
Evano, J. J. Wang, A. Nitelet, Org. Chem. Front. 2017, 4, 2480; c) E. N.
Pitsinos, V. P. Vidali, E. A. Couladouros, Eur. J. Org. Chem. 2011, 1207;
d) S. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451.
[2] E. Fuhrmann, J. Talbiersky, Org. Process Res. Dev. 2005, 9, 206.
[3] K. C. K. Swamy, N. N. B. Kumar, E. Balaraman, K. V. P.P Kumar, Chem.
Rev. 2009, 109, 2551.
[4] S. Caron, A. Ghosh, Nucleophilic Aromatic Substitution. In Practical
Synthetic Organic Chemistry, John Wiley & Sons: Hoboken, NJ, 2011, pp.
237−253.
[5] For reviews on the metal-catalyzed C−O cross-coupling, see: a): K. Keerthi
Krishnan, S. M. Ujwaldev, K. S. Sindhu, G. Anilkumar, Tetrahedron 2016,
72, 7393; b) S. Bhunia, G. G. Pawar, S. V. Kumar, Y. W. Jiang, D. W. Ma,
Angew. Chem. Int. Ed. 2017, 56, 16136; Angew. Chem. 2017, 129, 16352.
[6] For selected Pd-catalyzed C−O cross-coupling, see: a) K. E. Torraca, X.
Huang, C. A. Parrish, S. L. Buchwald, J. Am. Chem. Soc. 2001, 123,
10770; b) A. V. Vorogushin, X. Huang, S. L. Buchwald, J. Am. Chem. Soc.
2005, 127, 8146; c) G. J. Withbroe, R. A. Singer, J. E. Sieser, Org. Process
Res. Dev. 2008, 12, 480; d) E. J. Milton, J. A. Fuentes, M. L. Clarke, Org.
Biomol. Chem. 2009, 7, 2645; e) S. Gowrisankar, A. G. Sergeev, P.
Anbarasan, A. Spannenberg, H. Neumann, M. Beller, J. Am. Chem. Soc.
2010, 132, 11592; f) X. Wu, B. P. Fors, S. L. Buchwald, Angew. Chem. Int.
Ed. 2011, 50, 9943; Angew. Chem. 2011, 123, 10117; g) S. Gowrisankar,
H. Neumann, M. Beller, Chem. Eur. J. 2012, 18, 2498; h) P. E. Maligres, J.
Li, S. W. Krska, J. D. Schreier, I. T. Raheem, Angew. Chem. Int. Ed. 2012,
51, 9071; Angew. Chem. 2012, 124, 9205; i) C. W. Cheung, S. L. Buchwald,
Org. Lett. 2013, 15, 3998; j) T. M. Rangarajan, R. Singh, R. Brahma, K.
Devi, R. P. Singh, A. K. Prasad, Chem. Eur. J. 2014, 20, 14218; k) R. S.
Sawatzky, B. K. V. Hargreaves, M. Stradiotto, Eur. J. Org. Chem. 2016,
2444; l) H. Zhang, P. Ruiz-Castillo, S. L. Buchwald, Org. Lett. 2018, 20,
1580.
[7] For selected Cu-catalyzed C−O cross-coupling, see: a) M. Wolter, G.
Nordmann,G. E. Job, S. L. Buchwald, Org. Lett. 2002, 4, 973; b) H. Zhang,
D. W. Ma, W. Cao, Synlett 2007, 0243; c) R. A. Altman, A. Shafir, A. Choi,
P. A. Lichtor, S. L. Buchwald, J. Org. Chem. 2008, 73, 284; d) J. Niu, H.
Zhou, Z. Li, J. Xu, S. Hu, J. Org. Chem. 2008, 73, 7814; e) A. B. Naidu, E.
A. Jaseer, G. Sekar, J. Org. Chem. 2009, 74, 3675; f) Z. Chen, Y. Jiang, L.
Zhang, Y. Guo, D. Ma, J. Am. Chem. Soc. 2019, 141, 3541.
[8] For Ni-catalyzed C−O cross-coupling, see: a) P. M. MacQueen, J. P.
Tassone, C. Diaz, M. Stradiotto, J. Am. Chem. Soc. 2018, 140, 5023; b) J.
A. Terrett, J. D. Cuthbertson, V. W. Shurtleff, D. W. C. MacMillan, Nature,
2015, 524, 330; c) Q.-Q. Zhou, F.-D. Lu, D. Liu, L.-Q. Lu, W.-J. Xiao, Org.
Chem. Front. 2018, 5, 3098.
[9] Ni-catalyzed C-N coupling using soluble organic bases, see: a) R. Y. Liu,
J. M. Dennis, S. L. Buchwald, J. Am. Chem. Soc. 2020, ASAP,
soluble organic bases, see: b) L. M. Baumgartner,J. M. Dennis, N. A.
White, S. L. Buchwald, K. F. Jensen, Org. Process Res. Dev. 2019, 23,
1594; c) J. M. Dennis, N. A. White, R. Y. Liu, S. L. Buchwald, ACS Catal.
2019, 9, 3822; d) J. M. Dennis, N. A. White, R. Y. Liu, S. L. Buchwald, J.
Am. Chem. Soc. 2018, 140, 4721.
Scheme 6. A tentative mechanism for the etherification under light-promoted
nickel catalysis (X = halide, X’ = Ar or OR; see reference 24).
In summary, we have developed a light-promoted, highly
effective C-O coupling reaction, which uses an air-stable Ni(II)-
aryl halide complex as catalyst and DBU as base, with no need
for any other photosensitizer. The protocol features a very wide
substrate scope, allowing for primary and secondary aliphatic
alcohols to couple with a wide range of (hetero)aryl electrophiles
with diverse functional groups, including in particular the more
readily available but more challenging (hetero)aryl chlorides. Our
preliminary study appears to suggest that the catalysis proceeds
via a Ni(I)-Ni(III) cycle; however, there are still questions that
remain to be answered.[24]
[10] V. V. Grushin, H. Alper, Chem. Rev. 1994, 94, 1047.
[11] a) S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature, 2014, 509, 299; b)
V. P. Ananikov, ACS Catal. 2015, 5, 1964.
[12] L. Yang, Z. Huang, G. Li, W. Zhang, R. Cao, C. Wang, J. Xiao, D. Xue,
Angew. Chem. Int. Ed. 2018, 57, 1968; Angew. Chem. 2018, 130, 1986.
[13] For selected
coupling reactions without the use of external
photosensitizers, see: a) S. E. Creutz, K. J. Lotito, G. C. Fu, J. C. Peters,
Science, 2012, 338, 647; b) Q. M. Kainz, C. D. Matier, A. Bartoszewicz, S.
This article is protected by copyright. All rights reserved.